|
| 1 | +--- |
| 2 | +Title: '.sgn()' |
| 3 | +Description: 'Computes the sign of each element in the input tensor, returning a tensor with the same shape.' |
| 4 | +Subjects: |
| 5 | + - 'Computer Science' |
| 6 | + - 'Data Science' |
| 7 | +Tags: |
| 8 | + - 'Deep Learning' |
| 9 | + - 'Methods' |
| 10 | + - 'PyTorch' |
| 11 | + - 'Tensor' |
| 12 | +CatalogContent: |
| 13 | + - 'intro-to-py-torch-and-neural-networks' |
| 14 | + - 'paths/data-science' |
| 15 | +--- |
| 16 | + |
| 17 | +The **`.sgn()`** function computes the sign of each element in the input [tensor](https://www.codecademy.com/resources/docs/pytorch/tensors), applied element-wise. For real-valued tensors, it returns -1 for negative values, 0 for zero, and 1 for positive values. For complex-valued tensors, it returns the complex sign (the tensor divided by its absolute value), which gives the unit vector in the direction of each complex number. |
| 18 | + |
| 19 | +## Syntax |
| 20 | + |
| 21 | +```pseudo |
| 22 | +torch.sgn(input, *, out=None) → Tensor |
| 23 | +``` |
| 24 | + |
| 25 | +**Parameters:** |
| 26 | + |
| 27 | +- `input` (Tensor): The input tensor (can be real or complex). |
| 28 | +- `out` (Tensor, optional): Optional output tensor to store the result. |
| 29 | + |
| 30 | +**Return value:** |
| 31 | + |
| 32 | +A tensor with the same shape as `input`, containing the sign of each element. |
| 33 | + |
| 34 | +## Example 1: Using `.sgn()` with a Real-Valued Tensor |
| 35 | + |
| 36 | +In this example, `.sgn()` computes the sign of each element in a real-valued tensor: |
| 37 | + |
| 38 | +```py |
| 39 | +import torch |
| 40 | + |
| 41 | +# Create a tensor with positive, negative, and zero values |
| 42 | +x = torch.tensor([-5.0, -2.5, 0.0, 2.5, 5.0]) |
| 43 | + |
| 44 | +# Compute the sign |
| 45 | +result = torch.sgn(x) |
| 46 | + |
| 47 | +print(result) |
| 48 | +``` |
| 49 | + |
| 50 | +The output of this code is: |
| 51 | + |
| 52 | +```shell |
| 53 | +tensor([-1., -1., 0., 1., 1.]) |
| 54 | +``` |
| 55 | + |
| 56 | +## Example 2: Using `.sgn()` with a 2D Tensor |
| 57 | + |
| 58 | +In this example, `.sgn()` is applied to a 2D tensor: |
| 59 | + |
| 60 | +```py |
| 61 | +import torch |
| 62 | + |
| 63 | +# Create a 2x3 tensor |
| 64 | +matrix = torch.tensor([[-3.0, -1.0, 0.0], [1.0, 2.0, 3.0]]) |
| 65 | + |
| 66 | +# Compute the sign |
| 67 | +result = torch.sgn(matrix) |
| 68 | + |
| 69 | +print(result) |
| 70 | +``` |
| 71 | + |
| 72 | +The output of this code is: |
| 73 | + |
| 74 | +```shell |
| 75 | +tensor([[-1., -1., 0.], |
| 76 | + [ 1., 1., 1.]]) |
| 77 | +``` |
| 78 | + |
| 79 | +## Example 3: Using `.sgn()` with Complex Numbers |
| 80 | + |
| 81 | +For complex-valued tensors, `.sgn()` returns the complex sign, which is the unit vector in the direction of each complex number (computed as `x / |x|`): |
| 82 | + |
| 83 | +```py |
| 84 | +import torch |
| 85 | + |
| 86 | +# Create a tensor with complex numbers |
| 87 | +z = torch.tensor([1+2j, -1+2j, 3-4j]) |
| 88 | + |
| 89 | +# Compute the complex sign |
| 90 | +result = torch.sgn(z) |
| 91 | + |
| 92 | +print(result) |
| 93 | +``` |
| 94 | + |
| 95 | +The output of this code is: |
| 96 | + |
| 97 | +```shell |
| 98 | +tensor([0.4472+0.8944j, -0.4472+0.8944j, 0.6000-0.8000j]) |
| 99 | +``` |
| 100 | + |
| 101 | +In this example, each result has a magnitude of 1 (a unit vector), pointing in the direction of the original complex number. |
0 commit comments