| 
 | 1 | + | 
 | 2 | +import os  | 
 | 3 | +import os.path as osp  | 
 | 4 | +import argparse  | 
 | 5 | +from tqdm import tqdm  | 
 | 6 | + | 
 | 7 | +import cv2  | 
 | 8 | +import numpy as np  | 
 | 9 | + | 
 | 10 | + | 
 | 11 | +parse = argparse.ArgumentParser()  | 
 | 12 | +parse.add_argument('--im_root', dest='im_root', type=str, default='./datasets/cityscapes',)  | 
 | 13 | +parse.add_argument('--im_anns', dest='im_anns', type=str, default='./datasets/cityscapes/train.txt',)  | 
 | 14 | +args = parse.parse_args()  | 
 | 15 | + | 
 | 16 | + | 
 | 17 | +with open(args.im_anns, 'r') as fr:  | 
 | 18 | +    lines = fr.read().splitlines()  | 
 | 19 | + | 
 | 20 | +n_pairs = len(lines)  | 
 | 21 | +impaths, lbpaths = [], []  | 
 | 22 | +for l in lines:  | 
 | 23 | +    impth, lbpth = l.split(',')  | 
 | 24 | +    impth = osp.join(args.im_root, impth)  | 
 | 25 | +    lbpth = osp.join(args.im_root, lbpth)  | 
 | 26 | +    impaths.append(impth)  | 
 | 27 | +    lbpaths.append(lbpth)  | 
 | 28 | + | 
 | 29 | + | 
 | 30 | +## shapes  | 
 | 31 | +max_shape_area, min_shape_area = [0, 0], [100000, 100000]  | 
 | 32 | +max_shape_height, min_shape_height = [0, 0], [100000, 100000]  | 
 | 33 | +max_shape_width, min_shape_width = [0, 0], [100000, 100000]  | 
 | 34 | +max_lb_val, min_lb_val = -1, 10000000  | 
 | 35 | +for impth, lbpth in tqdm(zip(impaths, lbpaths), total=n_pairs):  | 
 | 36 | +    im = cv2.imread(impth)[:, :, ::-1]  | 
 | 37 | +    lb = cv2.imread(lbpth, 0)  | 
 | 38 | +    assert im.shape[:2] == lb.shape  | 
 | 39 | + | 
 | 40 | +    shape = lb.shape  | 
 | 41 | +    area = shape[0] * shape[1]  | 
 | 42 | +    if area > max_shape_area[0] * max_shape_area[1]:  | 
 | 43 | +        max_shape_area = shape  | 
 | 44 | +    if area < min_shape_area[0] * min_shape_area[1]:  | 
 | 45 | +        min_shape_area = shape  | 
 | 46 | + | 
 | 47 | +    if shape[0] > max_shape_height[0]:  | 
 | 48 | +        max_shape_height = shape  | 
 | 49 | +    if shape[0] < min_shape_height[0]:  | 
 | 50 | +        min_shape_height = shape  | 
 | 51 | + | 
 | 52 | +    if shape[1] > max_shape_width[1]:  | 
 | 53 | +        max_shape_width = shape  | 
 | 54 | +    if shape[1] < min_shape_width[1]:  | 
 | 55 | +        min_shape_width = shape  | 
 | 56 | + | 
 | 57 | +    max_lb_val = max(max_lb_val, np.max(lb.ravel()))  | 
 | 58 | +    min_lb_val = min(min_lb_val, np.min(lb.ravel()))  | 
 | 59 | + | 
 | 60 | + | 
 | 61 | +## label info  | 
 | 62 | +lb_minlength = max_lb_val+1-min_lb_val  | 
 | 63 | +lb_hist = np.zeros(lb_minlength)  | 
 | 64 | +for impth in tqdm(impaths):  | 
 | 65 | +    lb = cv2.imread(lbpth, 0).ravel() + min_lb_val  | 
 | 66 | +    lb_hist += np.bincount(lb, minlength=lb_minlength)  | 
 | 67 | + | 
 | 68 | +lb_missing_vals = [ind + min_lb_val  | 
 | 69 | +        for ind, el in enumerate(lb_hist.tolist()) if el == 0]  | 
 | 70 | +lb_ratios = (lb_hist / lb_hist.sum()).tolist()  | 
 | 71 | + | 
 | 72 | + | 
 | 73 | +## pixel mean/std  | 
 | 74 | +rgb_mean = np.zeros(3).astype(np.float32)  | 
 | 75 | +n_pixels = 0  | 
 | 76 | +for impth in tqdm(impaths):  | 
 | 77 | +    im = cv2.imread(impth)[:, :, ::-1].astype(np.float32)  | 
 | 78 | +    im = im.reshape(-1, 3)  | 
 | 79 | +    n_pixels += im.shape[0]  | 
 | 80 | +    rgb_mean += im.sum(axis=0)  | 
 | 81 | +rgb_mean = rgb_mean / n_pixels  | 
 | 82 | + | 
 | 83 | +rgb_std = np.zeros(3).astype(np.float32)  | 
 | 84 | +for impth in tqdm(impaths):  | 
 | 85 | +    im = cv2.imread(impth)[:, :, ::-1].astype(np.float32)  | 
 | 86 | +    im = im.reshape(-1, 3)  | 
 | 87 | + | 
 | 88 | +    a = (im - rgb_mean.reshape(1, 3)) ** 2  | 
 | 89 | +    rgb_std += a.sum(axis=0)  | 
 | 90 | +rgb_std = (rgb_std / n_pixels) ** (0.5)  | 
 | 91 | + | 
 | 92 | + | 
 | 93 | +print(f'there are {n_pairs} lines in {args.im_anns}, which means {n_pairs} image/label image pairs')  | 
 | 94 | +print('\n')  | 
 | 95 | + | 
 | 96 | +print('max and min image shapes by area are: ')  | 
 | 97 | +print(f'\t{max_shape_area}, {min_shape_area}')  | 
 | 98 | +print('max and min image shapes by height are: ')  | 
 | 99 | +print(f'\t{max_shape_height}, {min_shape_height}')  | 
 | 100 | +print('max and min image shapes by width are: ')  | 
 | 101 | +print(f'\t{max_shape_width}, {min_shape_width}')  | 
 | 102 | +print('\n')  | 
 | 103 | + | 
 | 104 | +print(f'label values are within range of ({min_lb_val}, {max_lb_val})')  | 
 | 105 | +print('label values that are missing: ')  | 
 | 106 | +print('\t', lb_missing_vals)  | 
 | 107 | +print('ratios of each label value: ')  | 
 | 108 | +print('\t', lb_ratios)  | 
 | 109 | +print('\n')  | 
 | 110 | + | 
 | 111 | +print('pixel mean rgb: ', mean)  | 
 | 112 | +print('pixel std rgb: ', std)  | 
0 commit comments