Skip to content

Commit bd79da4

Browse files
authored
Add Qwen-Image documentation and tutorials (#326)
- Add Chinese documentation for Qwen-Image workflow - Add English documentation for Qwen-Image workflow - Add tutorial images for Qwen-Image workflow steps - Update docs.json to include Qwen-Image tutorials
1 parent 10c0f10 commit bd79da4

File tree

4 files changed

+146
-0
lines changed

4 files changed

+146
-0
lines changed

docs.json

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -123,6 +123,7 @@
123123
{
124124
"group": "Image",
125125
"pages": [
126+
"tutorials/image/qwen/qwen-image",
126127
{
127128
"group": "HiDream",
128129
"pages": [
@@ -672,6 +673,7 @@
672673
{
673674
"group": "Image",
674675
"pages": [
676+
"zh-CN/tutorials/image/qwen/qwen-image",
675677
{
676678
"group": "HiDream",
677679
"pages": [
596 KB
Loading
Lines changed: 72 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,72 @@
1+
---
2+
title: "Qwen-Image ComfyUI Native Workflow Example"
3+
description: "Qwen-Image is a 20B parameter MMDiT (Multimodal Diffusion Transformer) model open-sourced under the Apache 2.0 license."
4+
sidebarTitle: "Qwen-Image"
5+
---
6+
7+
import UpdateReminder from '/snippets/tutorials/update-reminder.mdx'
8+
9+
10+
**Qwen-Image** is the first image generation foundation model released by Alibaba's Qwen team. It's a 20B parameter MMDiT (Multimodal Diffusion Transformer) model open-sourced under the Apache 2.0 license. The model has made significant advances in **complex text rendering** and **precise image editing**, achieving high-fidelity output for multiple languages including English and Chinese.
11+
12+
**Model Highlights**:
13+
- **Excellent Multilingual Text Rendering**: Supports high-precision text generation in multiple languages including English, Chinese, Korean, Japanese, maintaining font details and layout consistency
14+
- **Diverse Artistic Styles**: From photorealistic scenes to impressionist paintings, from anime aesthetics to minimalist design, fluidly adapting to various creative prompts
15+
16+
**Related Links**:
17+
- [GitHub](https://github.com/QwenLM/Qwen-Image)
18+
- [Hugging Face](https://huggingface.co/Qwen/Qwen-Image)
19+
- [ModelScope](https://modelscope.cn/models/qwen/Qwen-Image)
20+
21+
## Qwen-Image Native Workflow Example
22+
23+
<UpdateReminder />
24+
25+
The models used in this document can be obtained from [Huggingface](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/tree/main) or [Modelscope](https://modelscope.cn/models/Comfy-Org/Qwen-Image_ComfyUI/files)
26+
27+
## 1. Workflow File
28+
29+
After updating ComfyUI, you can find the workflow file in the templates, or drag the workflow below into ComfyUI to load it.
30+
![Qwen-image Text-to-Image Workflow](https://raw.githubusercontent.com/Comfy-Org/example_workflows/main/image/qwen/qwen-image.png)
31+
32+
<a className="prose" target='_blank' href="https://raw.githubusercontent.com/Comfy-Org/workflow_templates/refs/heads/main/templates/image_qwen_image.json" style={{ display: 'inline-block', backgroundColor: '#0078D6', color: '#ffffff', padding: '10px 20px', borderRadius: '8px', borderColor: "transparent", textDecoration: 'none', fontWeight: 'bold'}}>
33+
<p className="prose" style={{ margin: 0, fontSize: "0.8rem" }}>Download JSON Workflow</p>
34+
</a>
35+
## 2. Model Download
36+
37+
You can find all the models on [Huggingface](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/tree/main) or [Modelscope](https://modelscope.cn/models/Comfy-Org/Qwen-Image_ComfyUI/files)
38+
39+
**Diffusion Model**
40+
41+
- [qwen_image_fp8_e4m3fn.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/split_files/diffusion_models/qwen_image_fp8_e4m3fn.safetensors)
42+
43+
**Text Encoder**
44+
45+
- [qwen_2.5_vl_7b_fp8_scaled.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/split_files/text_encoders/qwen_2.5_vl_7b_fp8_scaled.safetensors)
46+
47+
**VAE**
48+
49+
- [qwen_image_vae.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/split_files/vae/qwen_image_vae.safetensors)
50+
51+
**Model Storage Location**
52+
53+
```
54+
📂 ComfyUI/
55+
├── 📂 models/
56+
│ ├── 📂 diffusion_models/
57+
│ │ └── qwen_image_fp8_e4m3fn.safetensors
58+
│ ├── 📂 vae/
59+
│ │ └── qwen_image_vae.safetensors
60+
│ └── 📂 text_encoders/
61+
│ └── qwen_2.5_vl_7b_fp8_scaled.safetensors
62+
```
63+
### 3. Complete the Workflow Step by Step
64+
65+
![Step Guide](/images/tutorial/image/qwen/image_qwen_image-guide.jpg)
66+
67+
1. Load `qwen_image_fp8_e4m3fn.safetensors` in the `Load Diffusion Model` node
68+
2. Load `qwen_2.5_vl_7b_fp8_scaled.safetensors` in the `Load CLIP` node
69+
3. Load `qwen_image_vae.safetensors` in the `Load VAE` node
70+
4. Set image dimensions in the `EmptySD3LatentImage` node
71+
5. Enter your prompts in the `CLIP Text Encoder` (supports English, Chinese, Korean, Japanese, Italian, etc.)
72+
6. Click Queue or press `Ctrl+Enter` to run
Lines changed: 72 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,72 @@
1+
---
2+
title: "Qwen-Image ComfyUI原生工作流示例"
3+
description: "Qwen-Image 是一个拥有 20B 参数的 MMDiT(多模态扩散变换器)模型,基于 Apache 2.0 许可证开源。"
4+
sidebarTitle: "Qwen-Image"
5+
---
6+
7+
import UpdateReminder from '/snippets/zh/tutorials/update-reminder.mdx'
8+
9+
10+
**Qwen-Image** 是阿里巴巴通义千问团队发布的首个图像生成基础模型,这是一个拥有 20B 参数的 MMDiT(多模态扩散变换器)模型,基于 Apache 2.0 许可证开源。该模型在**复杂文本渲染****精确图像编辑**方面取得了显著进展,无论是英语还是中文等多种语言都能实现高保真输出。
11+
12+
**模型亮点**
13+
- **卓越的多语言文本渲染**:支持英语、中文、韩语、日语等多种语言的高精度文本生成,保持字体细节和布局一致性
14+
- **多样化艺术风格**:从照片级真实到印象派绘画,从动漫美学到极简设计,流畅适应各种创意提示
15+
16+
*相关链接**:
17+
- [GitHub](https://github.com/QwenLM/Qwen-Image)
18+
- [Hugging Face](https://huggingface.co/Qwen/Qwen-Image)
19+
- [ModelScope](https://modelscope.cn/models/qwen/Qwen-Image)
20+
21+
## Qwen-Image 原生工作流示例
22+
23+
<UpdateReminder />
24+
25+
本文档中使用的模型你可以在 [Huggingface](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/tree/main) 获取到 [Modelscope](https://modelscope.cn/models/Comfy-Org/Qwen-Image_ComfyUI/files) 获取到
26+
27+
## 1. 工作流文件
28+
29+
更新 ComfyUI 后你可以从模板中找到工作流文件,或者将下面的工作流拖入 ComfyUI 中加载
30+
![Qwen-image 文生图工作流](https://raw.githubusercontent.com/Comfy-Org/example_workflows/main/image/qwen/qwen-image.png)
31+
32+
<a className="prose" target='_blank' href="https://raw.githubusercontent.com/Comfy-Org/workflow_templates/refs/heads/main/templates/image_qwen_image.json" style={{ display: 'inline-block', backgroundColor: '#0078D6', color: '#ffffff', padding: '10px 20px', borderRadius: '8px', borderColor: "transparent", textDecoration: 'none', fontWeight: 'bold'}}>
33+
<p className="prose" style={{ margin: 0, fontSize: "0.8rem" }}>下载 JSON 格式工作流</p>
34+
</a>
35+
## 2. 模型下载
36+
37+
You can find all the models on [Huggingface](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/tree/main) or [Modelscope](https://modelscope.cn/models/Comfy-Org/Qwen-Image_ComfyUI/files)
38+
39+
**Diffusion Model**
40+
41+
- [qwen_image_fp8_e4m3fn.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/split_files/diffusion_models/qwen_image_fp8_e4m3fn.safetensors)
42+
43+
**Text Encoder**
44+
45+
- [qwen_2.5_vl_7b_fp8_scaled.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/split_files/text_encoders/qwen_2.5_vl_7b_fp8_scaled.safetensors)
46+
47+
**VAE**
48+
49+
- [qwen_image_vae.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/split_files/vae/qwen_image_vae.safetensors)
50+
51+
Model Storage Location
52+
53+
```
54+
📂 ComfyUI/
55+
├── 📂 models/
56+
│ ├── 📂 diffusion_models/
57+
│ │ └── qwen_image_fp8_e4m3fn.safetensors
58+
│ ├── 📂 vae/
59+
│ │ └── qwen_image_vae.safetensors
60+
│ └── 📂 text_encoders/
61+
│ └── qwen_2.5_vl_7b_fp8_scaled.safetensors
62+
```
63+
### 3. 按步骤完成工作流
64+
65+
![步骤图](/images/tutorial/image/qwen/image_qwen_image-guide.jpg)
66+
67+
1. 确保 `Load Diffusion Model`节点加载了`qwen_image_fp8_e4m3fn.safetensors`
68+
2. 确保 `Load CLIP`节点中加载了`qwen_2.5_vl_7b_fp8_scaled.safetensors`
69+
3. 确保 `Load VAE`节点中加载了`qwen_image_vae.safetensors`
70+
4. 确保 `EmptySD3LatentImage`节点中设置好了图片的尺寸
71+
5.`CLIP Text Encoder`节点中设置好提示词,目前经过测试目前至少支持:英语、中文、韩语、日语、意大利语等
72+
6. 点击 `Queue` 按钮,或者使用快捷键 `Ctrl(cmd) + Enter(回车)` 来运行工作流

0 commit comments

Comments
 (0)