diff --git a/docs.json b/docs.json
index 9bddd0fc5..5722cb48a 100644
--- a/docs.json
+++ b/docs.json
@@ -151,6 +151,7 @@
"group": "Wan Video",
"pages": [
"tutorials/video/wan/wan2_2",
+ "tutorials/video/wan/wan2-2-fun-inp",
{
"group": "Wan2.1",
"pages": [
@@ -698,6 +699,7 @@
"group": "万相视频",
"pages": [
"zh-CN/tutorials/video/wan/wan2_2",
+ "zh-CN/tutorials/video/wan/wan2-2-fun-inp",
{
"group": "Wan2.1",
"pages": [
diff --git a/images/tutorial/image/qwen/image_qwen_image-guide.jpg b/images/tutorial/image/qwen/image_qwen_image-guide.jpg
index 4a303f2fd..0005ce43c 100644
Binary files a/images/tutorial/image/qwen/image_qwen_image-guide.jpg and b/images/tutorial/image/qwen/image_qwen_image-guide.jpg differ
diff --git a/images/tutorial/video/wan/wan2_2/wan_2.2_14b_fun_inp.jpg b/images/tutorial/video/wan/wan2_2/wan_2.2_14b_fun_inp.jpg
new file mode 100644
index 000000000..c9632a19d
Binary files /dev/null and b/images/tutorial/video/wan/wan2_2/wan_2.2_14b_fun_inp.jpg differ
diff --git a/tutorials/image/qwen/qwen-image.mdx b/tutorials/image/qwen/qwen-image.mdx
index 4f32f02fc..2169d428e 100644
--- a/tutorials/image/qwen/qwen-image.mdx
+++ b/tutorials/image/qwen/qwen-image.mdx
@@ -22,17 +22,21 @@ import UpdateReminder from '/snippets/tutorials/update-reminder.mdx'
-**VRAM usage reference**
-Tested with **RTX 4090D 24GB**
- Model Version: Qwen-Image_fp8
-- VRAM: 86%
-- Generation time: 94s for the first time, 71s for the second time
+There are three different models used in the workflow attached to this document:
+1. Qwen-Image original model fp8_e4m3fn
+2. 8-step accelerated version: Qwen-Image original model fp8_e4m3fn with lightx2v 8-step LoRA
+3. Distilled version: Qwen-Image distilled model fp8_e4m3fn
-**Model Version: Qwen-Image_bf16**
-- VRAM: 96%
-- Generation time: 295s for the first time, 131s for the second time
+**VRAM Usage Reference**
+GPU: RTX4090D 24GB
+
+| Model Used | VRAM Usage | First Generation | Second Generation |
+| --------------------------------------- | ---------- | --------------- | ---------------- |
+| fp8_e4m3fn | 86% | ≈ 94s | ≈ 71s |
+| fp8_e4m3fn with lightx2v 8-step LoRA | 86% | ≈ 55s | ≈ 34s |
+| Distilled fp8_e4m3fn | 86% | ≈ 69s | ≈ 36s |
### 1. Workflow File
@@ -59,23 +63,27 @@ Distilled version
All models are available at [Huggingface](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/tree/main) and [Modelscope](https://modelscope.cn/models/Comfy-Org/Qwen-Image_ComfyUI/files)
-**Diffusion Model**
+**Diffusion model**
+
+- [qwen_image_fp8_e4m3fn.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/split_files/diffusion_models/qwen_image_fp8_e4m3fn.safetensors)
-[qwen_image_fp8_e4m3fn.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/split_files/diffusion_models/qwen_image_fp8_e4m3fn.safetensors)
+Qwen_image_distill
-The following models are unofficial distilled versions that require only 15 steps.
-[Distilled Versions](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/tree/main/non_official/diffusion_models)
-- [qwen_image_distill_full_bf16.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/non_official/diffusion_models/qwen_image_distill_full_bf16.safetensors) 40.9 GB
-- [qwen_image_distill_full_fp8.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/non_official/diffusion_models/qwen_image_distill_full_fp8_e4m3fn.safetensors) 20.4 GB
+- [qwen_image_distill_full_fp8_e4m3fn.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/non_official/diffusion_models/qwen_image_distill_full_fp8_e4m3fn.safetensors)
+- [qwen_image_distill_full_bf16.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/non_official/diffusion_models/qwen_image_distill_full_bf16.safetensors)
- - The original author of the distilled version recommends using 15 steps with cfg 1.0.
-- According to tests, this distilled version also performs well at 10 steps with cfg 1.0. You can choose euler or res_multistep according to your desired image type.
+- The original author of the distilled version recommends using 15 steps with cfg 1.0.
+- According to tests, this distilled version also performs well at 10 steps with cfg 1.0. You can choose either euler or res_multistep based on the type of image you want.
-**Text Encoder**
+**LoRA**
+
+- [Qwen-Image-Lightning-8steps-V1.0.safetensors](https://huggingface.co/lightx2v/Qwen-Image-Lightning/resolve/main/Qwen-Image-Lightning-8steps-V1.0.safetensors)
+
+**Text encoder**
-[qwen_2.5_vl_7b_fp8_scaled.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/split_files/text_encoders/qwen_2.5_vl_7b_fp8_scaled.safetensors)
+- [qwen_2.5_vl_7b_fp8_scaled.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/split_files/text_encoders/qwen_2.5_vl_7b_fp8_scaled.safetensors)
**VAE**
@@ -87,19 +95,29 @@ The following models are unofficial distilled versions that require only 15 step
📂 ComfyUI/
├── 📂 models/
│ ├── 📂 diffusion_models/
-│ │ └── qwen_image_fp8_e4m3fn.safetensors
+│ │ ├── qwen_image_fp8_e4m3fn.safetensors
+│ │ └── qwen_image_distill_full_fp8_e4m3fn.safetensors ## 蒸馏版
+│ ├── 📂 loras/
+│ │ └── Qwen-Image-Lightning-8steps-V1.0.safetensors ## 8步加速 LoRA 模型
│ ├── 📂 vae/
│ │ └── qwen_image_vae.safetensors
│ └── 📂 text_encoders/
│ └── qwen_2.5_vl_7b_fp8_scaled.safetensors
```
+
### 3. Complete the Workflow Step by Step

-1. Load `qwen_image_fp8_e4m3fn.safetensors` in the `Load Diffusion Model` node
-2. Load `qwen_2.5_vl_7b_fp8_scaled.safetensors` in the `Load CLIP` node
-3. Load `qwen_image_vae.safetensors` in the `Load VAE` node
-4. Set image dimensions in the `EmptySD3LatentImage` node
-5. Enter your prompts in the `CLIP Text Encoder` (supports English, Chinese, Korean, Japanese, Italian, etc.)
-6. Click Queue or press `Ctrl+Enter` to run
\ No newline at end of file
+1. Make sure the `Load Diffusion Model` node has loaded `qwen_image_fp8_e4m3fn.safetensors`
+2. Make sure the `Load CLIP` node has loaded `qwen_2.5_vl_7b_fp8_scaled.safetensors`
+3. Make sure the `Load VAE` node has loaded `qwen_image_vae.safetensors`
+4. Make sure the `EmptySD3LatentImage` node is set with the correct image dimensions
+5. Set your prompt in the `CLIP Text Encoder` node; currently, it supports at least English, Chinese, Korean, Japanese, Italian, etc.
+6. If you want to enable the 8-step acceleration LoRA by lightx2v, select the node and use `Ctrl + B` to enable it, and modify the Ksampler settings as described in step 8
+7. Click the `Queue` button, or use the shortcut `Ctrl(cmd) + Enter` to run the workflow
+8. For different model versions and workflows, adjust the KSampler parameters accordingly
+
+
+ The distilled model and the 8-step acceleration LoRA by lightx2v do not seem to be compatible for simultaneous use. You can experiment with different combinations to verify if they can be used together.
+
\ No newline at end of file
diff --git a/tutorials/video/wan/wan2-2-fun-inp.mdx b/tutorials/video/wan/wan2-2-fun-inp.mdx
new file mode 100644
index 000000000..caadcf1ab
--- /dev/null
+++ b/tutorials/video/wan/wan2-2-fun-inp.mdx
@@ -0,0 +1,114 @@
+---
+title: "ComfyUI Wan2.2 Fun Inp Start-End Frame Video Generation Example"
+description: "This article introduces how to use ComfyUI to complete the Wan2.2 Fun Inp start-end frame video generation example"
+sidebarTitle: "Wan2.2 Fun Inp"
+---
+
+import UpdateReminder from '/snippets/tutorials/update-reminder.mdx'
+
+**Wan2.2-Fun-Inp** is a start-end frame controlled video generation model launched by Alibaba PAI team. It supports inputting **start and end frame images** to generate intermediate transition videos, providing creators with greater creative control. The model is released under the **Apache 2.0 license** and supports commercial use.
+
+**Key Features**:
+- **Start-End Frame Control**: Supports inputting start and end frame images to generate intermediate transition videos, enhancing video coherence and creative freedom
+- **High-Quality Video Generation**: Based on the Wan2.2 architecture, outputs film-level quality videos
+- **Multi-Resolution Support**: Supports generating videos at 512×512, 768×768, 1024×1024 and other resolutions to suit different scenarios
+
+**Model Version**:
+- **14B High-Performance Version**: Model size exceeds 32GB, with better results but requires high VRAM
+
+Below are the relevant model weights and code repositories:
+
+- [🤗Wan2.2-Fun-Inp-14B](https://huggingface.co/alibaba-pai/Wan2.2-Fun-A14B-InP)
+- Code repository: [VideoX-Fun](https://github.com/aigc-apps/VideoX-Fun)
+
+
+
+## Wan2.2 Fun Inp Start-End Frame Video Generation Workflow Example
+
+This workflow provides two versions:
+1. A version using [Wan2.2-Lightning](https://huggingface.co/lightx2v/Wan2.2-Lightning) 4-step LoRA from lightx2v for accelerated video generation
+2. A fp8_scaled version without acceleration LoRA
+
+Below are the test results using an RTX4090D 24GB VRAM GPU
+
+| Model Type | Resolution | VRAM Usage | First Generation Time | Second Generation Time |
+| ------------------------ | ---------- | ---------- | -------------------- | --------------------- |
+| fp8_scaled | 640×640 | 83% | ≈ 524s | ≈ 520s |
+| fp8_scaled + 4-step LoRA | 640×640 | 89% | ≈ 138s | ≈ 79s |
+
+Since the acceleration with LoRA is significant, the provided workflows enable the accelerated LoRA version by default. If you want to enable the other workflow, select it and use **Ctrl+B** to activate.
+
+### 1. Download Workflow File
+
+Please update your ComfyUI to the latest version, and find "**Wan2.2 Fun Inp**" under the menu `Workflow` -> `Browse Templates` -> `Video` to load the workflow.
+
+Or, after updating ComfyUI to the latest version, download the workflow below and drag it into ComfyUI to load.
+
+
+
+
+ Download JSON Workflow
+
+
+Use the following materials as the start and end frames
+
+
+
+
+### 2. Manually Download Models
+
+**Diffusion Model**
+- [wan2.2_fun_inpaint_high_noise_14B_fp8_scaled.safetensors](https://huggingface.co/Comfy-Org/Wan_2.2_ComfyUI_Repackaged/resolve/main/split_files/diffusion_models/wan2.2_fun_inpaint_high_noise_14B_fp8_scaled.safetensors)
+- [wan2.2_fun_inpaint_low_noise_14B_fp8_scaled.safetensors](https://huggingface.co/Comfy-Org/Wan_2.2_ComfyUI_Repackaged/resolve/main/split_files/diffusion_models/wan2.2_fun_inpaint_low_noise_14B_fp8_scaled.safetensors)
+
+**Lightning LoRA (Optional, for acceleration)**
+- [wan2.2_i2v_lightx2v_4steps_lora_v1_high_noise.safetensors](https://huggingface.co/Comfy-Org/Wan_2.2_ComfyUI_Repackaged/resolve/main/split_files/loras/wan2.2_i2v_lightx2v_4steps_lora_v1_high_noise.safetensors)
+- [wan2.2_i2v_lightx2v_4steps_lora_v1_low_noise.safetensors](https://huggingface.co/Comfy-Org/Wan_2.2_ComfyUI_Repackaged/resolve/main/split_files/loras/wan2.2_i2v_lightx2v_4steps_lora_v1_low_noise.safetensors)
+
+**VAE**
+- [wan_2.1_vae.safetensors](https://huggingface.co/Comfy-Org/Wan_2.2_ComfyUI_Repackaged/resolve/main/split_files/vae/wan_2.1_vae.safetensors)
+
+**Text Encoder**
+- [umt5_xxl_fp8_e4m3fn_scaled.safetensors](https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/resolve/main/split_files/text_encoders/umt5_xxl_fp8_e4m3fn_scaled.safetensors)
+
+```
+ComfyUI/
+├───📂 models/
+│ ├───📂 diffusion_models/
+│ │ ├─── wan2.2_fun_inpaint_high_noise_14B_fp8_scaled.safetensors
+│ │ └─── wan2.2_fun_inpaint_low_noise_14B_fp8_scaled.safetensors
+│ ├───📂 loras/
+│ │ ├─── wan2.2_i2v_lightx2v_4steps_lora_v1_high_noise.safetensors
+│ │ └─── wan2.2_i2v_lightx2v_4steps_lora_v1_low_noise.safetensors
+│ ├───📂 text_encoders/
+│ │ └─── umt5_xxl_fp8_e4m3fn_scaled.safetensors
+│ └───📂 vae/
+│ └── wan_2.1_vae.safetensors
+```
+
+### 3. Step-by-Step Workflow Guide
+
+
+
+
+ This workflow uses LoRA. Please make sure the corresponding Diffusion model and LoRA are matched.
+
+
+1. **High noise** model and **LoRA** loading
+ - Ensure the `Load Diffusion Model` node loads the `wan2.2_fun_inpaint_high_noise_14B_fp8_scaled.safetensors` model
+ - Ensure the `LoraLoaderModelOnly` node loads the `wan2.2_i2v_lightx2v_4steps_lora_v1_high_noise.safetensors`
+2. **Low noise** model and **LoRA** loading
+ - Ensure the `Load Diffusion Model` node loads the `wan2.2_fun_inpaint_low_noise_14B_fp8_scaled.safetensors` model
+ - Ensure the `LoraLoaderModelOnly` node loads the `wan2.2_i2v_lightx2v_4steps_lora_v1_low_noise.safetensors`
+3. Ensure the `Load CLIP` node loads the `umt5_xxl_fp8_e4m3fn_scaled.safetensors` model
+4. Ensure the `Load VAE` node loads the `wan_2.1_vae.safetensors` model
+5. Upload the start and end frame images as materials
+6. Enter your prompt in the Prompt group
+7. Adjust the size and video length in the `WanFunInpaintToVideo` node
+ - Adjust the `width` and `height` parameters. The default is `640`. We set a smaller size, but you can modify it as needed.
+ - Adjust the `length`, which is the total number of frames. The current workflow fps is 16. For example, if you want to generate a 5-second video, you should set it to 5*16 = 80.
+8. Click the `Run` button, or use the shortcut `Ctrl(cmd) + Enter` to execute video generation
diff --git a/zh-CN/tutorials/image/qwen/qwen-image.mdx b/zh-CN/tutorials/image/qwen/qwen-image.mdx
index 39bdc4d87..dd197d4fa 100644
--- a/zh-CN/tutorials/image/qwen/qwen-image.mdx
+++ b/zh-CN/tutorials/image/qwen/qwen-image.mdx
@@ -22,16 +22,20 @@ import UpdateReminder from '/snippets/zh/tutorials/update-reminder.mdx'
-**显存使用参考**
-使用 **RTX 4090D 24GB** 测试
-**模型版本: Qwen-Image_fp8**
-- VRAM: 86%
-- 生成时间: 首次 94 秒,第二次 71 秒
+在本篇文档所附工作流中使用的不同模型有三种
+1. Qwen-Image 原版模型 fp8_e4m3fn
+2. 8步加速版: Qwen-Image 原版模型 fp8_e4m3fn 使用 lightx2v 8步 LoRA,
+3. 蒸馏版:Qwen-Image 蒸馏版模型 fp8_e4m3fn
+
+**显存使用参考**
+GPU: RTX4090D 24GB
-**模型版本: Qwen-Image_bf16**
-- VRAM: 96%
-- 生成时间: 首次 295 秒,第二次 131 秒
+| 使用模型 | VRAM Usage | 首次生成 | 第二次生成 |
+| --------------------------------- | ---------- | -------- | ---------- |
+| fp8_e4m3fn | 86% | ≈ 94s | ≈ 71s |
+| fp8_e4m3fn 使用 lightx2v 8步 LoRA | 86% | ≈ 55s | ≈ 34s |
+| 蒸馏版 fp8_e4m3fn | 86% | ≈ 69s | ≈ 36s |
### 1. 工作流文件
@@ -48,7 +52,7 @@ import UpdateReminder from '/snippets/zh/tutorials/update-reminder.mdx'
### 2. 模型下载
-**ComfyUI 提供的版本**
+**你可以在 ComfyOrg 仓库找到的版本**
- Qwen-Image_bf16 (40.9 GB)
- Qwen-Image_fp8 (20.4 GB)
- 蒸馏版本 (非官方,仅需 15 步)
@@ -56,39 +60,48 @@ import UpdateReminder from '/snippets/zh/tutorials/update-reminder.mdx'
所有模型均可在 [Huggingface](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/tree/main) 或者 [魔搭](https://modelscope.cn/models/Comfy-Org/Qwen-Image_ComfyUI/files) 找到
-**Diffusion Model**
+**Diffusion model**
-[qwen_image_fp8_e4m3fn.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/split_files/diffusion_models/qwen_image_fp8_e4m3fn.safetensors)
+- [qwen_image_fp8_e4m3fn.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/split_files/diffusion_models/qwen_image_fp8_e4m3fn.safetensors)
-下面的模型为非官方仅需 15 步的蒸馏版本
-[蒸馏版本](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/tree/main/non_official/diffusion_models)
-- [qwen_image_distill_full_bf16.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/non_official/diffusion_models/qwen_image_distill_full_bf16.safetensors) 40.9 GB
-- [qwen_image_distill_full_fp8.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/non_official/diffusion_models/qwen_image_distill_full_fp8_e4m3fn.safetensors) 20.4 GB
+Qwen_image_distill
+
+- [qwen_image_distill_full_fp8_e4m3fn.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/non_official/diffusion_models/qwen_image_distill_full_fp8_e4m3fn.safetensors)
+- [qwen_image_distill_full_bf16.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/non_official/diffusion_models/qwen_image_distill_full_bf16.safetensors)
- 蒸馏版本原始作者建议在 15 步 cfg 1.0
- 经测试该蒸馏版本在 10 步 cfg 1.0 下表现良好,根据你想要的图像类型选择 euler 或 res_multistep
-**Text Encoder**
+**LoRA**
+
+- [Qwen-Image-Lightning-8steps-V1.0.safetensors](https://huggingface.co/lightx2v/Qwen-Image-Lightning/resolve/main/Qwen-Image-Lightning-8steps-V1.0.safetensors)
-[qwen_2.5_vl_7b_fp8_scaled.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/split_files/text_encoders/qwen_2.5_vl_7b_fp8_scaled.safetensors)
+**Text encoder**
+
+- [qwen_2.5_vl_7b_fp8_scaled.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/split_files/text_encoders/qwen_2.5_vl_7b_fp8_scaled.safetensors)
**VAE**
-[qwen_image_vae.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/split_files/vae/qwen_image_vae.safetensors)
+- [qwen_image_vae.safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/resolve/main/split_files/vae/qwen_image_vae.safetensors)
+模型保存位置
```
📂 ComfyUI/
├── 📂 models/
│ ├── 📂 diffusion_models/
-│ │ └── qwen_image_fp8_e4m3fn.safetensors
+│ │ ├── qwen_image_fp8_e4m3fn.safetensors
+│ │ └── qwen_image_distill_full_fp8_e4m3fn.safetensors ## 蒸馏版
+│ ├── 📂 loras/
+│ │ └── Qwen-Image-Lightning-8steps-V1.0.safetensors ## 8步加速 LoRA 模型
│ ├── 📂 vae/
│ │ └── qwen_image_vae.safetensors
│ └── 📂 text_encoders/
│ └── qwen_2.5_vl_7b_fp8_scaled.safetensors
```
+
### 3. 按步骤完成工作流

@@ -98,4 +111,10 @@ import UpdateReminder from '/snippets/zh/tutorials/update-reminder.mdx'
3. 确保 `Load VAE`节点中加载了`qwen_image_vae.safetensors`
4. 确保 `EmptySD3LatentImage`节点中设置好了图片的尺寸
5. 在`CLIP Text Encoder`节点中设置好提示词,目前经过测试目前至少支持:英语、中文、韩语、日语、意大利语等
-6. 点击 `Queue` 按钮,或者使用快捷键 `Ctrl(cmd) + Enter(回车)` 来运行工作流
\ No newline at end of file
+6. 如果需要启用 lightx2v 的 8 步加速 LoRA ,请选中后用 `Ctrl + B` 启用该节点,并按 序号`8` 处的设置参数修改 Ksampler 的设置设置
+7. 点击 `Queue` 按钮,或者使用快捷键 `Ctrl(cmd) + Enter(回车)` 来运行工作流
+8. 对于不同版本的模型和工作流的对应 KSampler 的参数设置
+
+
+ 蒸馏版模型和 lightx2v 的 8 步加速 LoRA 似乎不能同时使用,你可以测试具体的组合参数来验证组合使用的方式是否可行
+
\ No newline at end of file
diff --git a/zh-CN/tutorials/video/wan/wan2-2-fun-inp.mdx b/zh-CN/tutorials/video/wan/wan2-2-fun-inp.mdx
new file mode 100644
index 000000000..28f6f1cb6
--- /dev/null
+++ b/zh-CN/tutorials/video/wan/wan2-2-fun-inp.mdx
@@ -0,0 +1,114 @@
+---
+title: "ComfyUI Wan2.2 Fun Inp 首尾帧视频生成示例"
+description: "本文介绍了如何在 ComfyUI 中完成 Wan2.2 Fun Inp 首尾帧视频生成示例"
+sidebarTitle: "Wan2.2 Fun Inp"
+---
+
+import UpdateReminder from '/snippets/zh/tutorials/update-reminder.mdx'
+
+**Wan2.2-Fun-Inp** 是 Alibaba pai团队推出的首尾帧控制视频生成模型,支持输入**首帧和尾帧图像**,生成中间过渡视频,为创作者带来更强的创意控制力。该模型采用 **Apache 2.0 许可协议**发布,支持商业使用。
+
+**核心功能**:
+- **首尾帧控制**:支持输入首帧和尾帧图像,生成中间过渡视频,提升视频连贯性与创意自由度
+- **高质量视频生成**:基于 Wan2.2 架构,输出影视级质量视频
+- **多分辨率支持**:支持生成512×512、768×768、1024×1024等分辨率的视频,适配不同场景需求
+
+**模型版本**:
+- **14B 高性能版**:模型体积达 32GB+,效果更优但需高显存支持
+
+下面是相关模型权重和代码仓库:
+
+- [🤗Wan2.2-Fun-Inp-14B](https://huggingface.co/alibaba-pai/Wan2.2-Fun-A14B-InP)
+- 代码仓库:[VideoX-Fun](https://github.com/aigc-apps/VideoX-Fun)
+
+
+
+## Wan2.2 Fun Inp 首尾帧视频生成工作流示例
+
+这里提供的工作流包含了两个版本的
+1. 使用了 lightx2v 的 [Wan2.2-Lightning](https://huggingface.co/lightx2v/Wan2.2-Lightning) 4 步 LoRA 来实现视频生成提速的版本
+2. 没有使用加速 LoRA 的 fp8_scaled 版本
+
+下面是使用 RTX4090D 24GB 显存 GPU 测试的结果
+
+| 模型类型 | 分辨率 | 显存占用 | 首次生成时长 | 第二次生成时长 |
+| ------------------------ | ------- | -------- | ------------ | -------------- |
+| fp8_scaled | 640×640 | 83% | ≈ 524秒 | ≈ 520秒 |
+| fp8_scaled + 4步LoRA加速 | 640×640 | 89% | ≈ 138秒 | ≈ 79秒 |
+
+由于使用了加速 LoRA 后提速较为明显,在提供的两组工作流中,我们默认启用了使用了加速 LoRA 版本,如果你需要启用另一组的工作流,框选后使用 **Ctrl+B** 即可启用
+
+### 1. 工作流文件下载
+
+请更新你的 ComfyUI 到最新版本,并通过菜单 `工作流` -> `浏览模板` -> `视频` 找到 "**Wan2.2 Fun Inp**" 以加载工作流
+
+或者更新你的 ComfyUI 到最新版本后,下载下面的工作流并拖入 ComfyUI 以加载工作流
+
+
+
+
+ 下载 JSON 格式工作流
+
+
+使用下面的素材作为首尾帧
+
+
+
+
+### 2. 手动下载模型
+
+**Diffusion Model**
+- [wan2.2_fun_inpaint_high_noise_14B_fp8_scaled.safetensors](https://huggingface.co/Comfy-Org/Wan_2.2_ComfyUI_Repackaged/resolve/main/split_files/diffusion_models/wan2.2_fun_inpaint_high_noise_14B_fp8_scaled.safetensors)
+- [wan2.2_fun_inpaint_low_noise_14B_fp8_scaled.safetensors](https://huggingface.co/Comfy-Org/Wan_2.2_ComfyUI_Repackaged/resolve/main/split_files/diffusion_models/wan2.2_fun_inpaint_low_noise_14B_fp8_scaled.safetensors)
+
+**Lightning LoRA (可选,用于加速)**
+- [wan2.2_i2v_lightx2v_4steps_lora_v1_high_noise.safetensors](https://huggingface.co/Comfy-Org/Wan_2.2_ComfyUI_Repackaged/resolve/main/split_files/loras/wan2.2_i2v_lightx2v_4steps_lora_v1_high_noise.safetensors)
+- [wan2.2_i2v_lightx2v_4steps_lora_v1_low_noise.safetensors](https://huggingface.co/Comfy-Org/Wan_2.2_ComfyUI_Repackaged/resolve/main/split_files/loras/wan2.2_i2v_lightx2v_4steps_lora_v1_low_noise.safetensors)
+
+**VAE**
+- [wan_2.1_vae.safetensors](https://huggingface.co/Comfy-Org/Wan_2.2_ComfyUI_Repackaged/resolve/main/split_files/vae/wan_2.1_vae.safetensors)
+
+**Text Encoder**
+- [umt5_xxl_fp8_e4m3fn_scaled.safetensors](https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/resolve/main/split_files/text_encoders/umt5_xxl_fp8_e4m3fn_scaled.safetensors)
+
+```
+ComfyUI/
+├───📂 models/
+│ ├───📂 diffusion_models/
+│ │ ├─── wan2.2_fun_inpaint_high_noise_14B_fp8_scaled.safetensors
+│ │ └─── wan2.2_fun_inpaint_low_noise_14B_fp8_scaled.safetensors
+│ ├───📂 loras/
+│ │ ├─── wan2.2_i2v_lightx2v_4steps_lora_v1_high_noise.safetensors
+│ │ └─── wan2.2_i2v_lightx2v_4steps_lora_v1_low_noise.safetensors
+│ ├───📂 text_encoders/
+│ │ └─── umt5_xxl_fp8_e4m3fn_scaled.safetensors
+│ └───📂 vae/
+│ └── wan_2.1_vae.safetensors
+```
+
+### 3. 按步骤完成工作流
+
+
+
+
+ 这个工作流是使用了 LoRA 的工作流,请确保对应的 Diffusion model 和 LoRA 是一致的
+
+
+1. **High noise** 模型及 **LoRA** 加载
+ - 确保 `Load Diffusion Model` 节点加载了 `wan2.2_fun_inpaint_high_noise_14B_fp8_scaled.safetensors` 模型
+ - 确保 `LoraLoaderModelOnly` 节点加载了 `wan2.2_i2v_lightx2v_4steps_lora_v1_high_noise.safetensors`
+2. **Low noise** 模型及 **LoRA** 加载
+ - 确保 `Load Diffusion Model` 节点加载了 `wan2.2_fun_inpaint_low_noise_14B_fp8_scaled.safetensors` 模型
+ - 确保 `LoraLoaderModelOnly` 节点加载了 `wan2.2_i2v_lightx2v_4steps_lora_v1_low_noise.safetensors`
+3. 确保 `Load CLIP` 节点加载了 `umt5_xxl_fp8_e4m3fn_scaled.safetensors` 模型
+4. 确保 `Load VAE` 节点加载了 `wan_2.1_vae.safetensors` 模型
+5. 首尾帧图片上传,分别上传首尾帧图片素材
+6. 在 Prompt 组中输入提示词
+7. `WanFunInpaintToVideo` 节点尺寸和视频长度调整
+ - 调整 `width` 和 `height` 的尺寸,默认为 `640`, 我们设置了较小的尺寸你可以按需进行修改
+ - 调整 `length`, 这里为视频总帧数,当前工作流 fps 为 16, 假设你需要生成一个 5 秒的视频,那么你应该设置 5*16 = 80
+8. 点击 `Run` 按钮,或者使用快捷键 `Ctrl(cmd) + Enter(回车)` 来执行视频生成