You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+10-6Lines changed: 10 additions & 6 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -133,20 +133,24 @@ Tested with `SPMF` version 2.54, which implements gSpan [[Y'02](#references)] (t
133
133
134
134
For the ECML PKDD assessment, we use the following algorithms for the sake of comparison:
135
135
136
-
* The `WL` and `WLOA` algorithms are included in the `Grakel` library, documentation available [here](https://ysig.github.io/GraKeL/0.1a8/benchmarks.html)
137
-
*`Graph2Vec` is included in the `karateclub` library, documentation available [here](https://karateclub.readthedocs.io/en/latest/)
138
-
*`DGCNN` is included in the `stellargraph` library, documentation available [here](https://stellargraph.readthedocs.io/en/stable/).
139
-
* We use the implementation of `CORK` from Marisa Thoma. This implementation is available in the `CORKcpp.zip` archive.
136
+
* The `WL`[[S'11](#references)]and `WL_OA`[[K'16](#references)] algorithms are included in the `Grakel` library, documentation available [here](https://ysig.github.io/GraKeL/0.1a8/benchmarks.html)
137
+
*`Graph2Vec`[[N'17](#references)]is included in the `karateclub` library, documentation available [here](https://karateclub.readthedocs.io/en/latest/)
138
+
*`DGCNN`[[Z'18](#references)]is included in the `stellargraph` library, documentation available [here](https://stellargraph.readthedocs.io/en/stable/).
139
+
* We use the implementation of `CORK`[[T'09](#references)]from Marisa Thoma. This implementation is available in the `CORKcpp.zip` archive.
140
140
141
141
142
142
# References
143
+
***[C'04]** L. P. Cordella, P. Foggia, C. Sansone, M. Vento. *A (sub)graph isomorphism algorithm for matching large graphs*, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(10):1367-1372, 2004. DOI: [10.1109/tpami.2004.75](https://doi.org/10.1109/tpami.2004.75)
143
144
***[D'91]** A. S. Debnath, R. L. Lopez, G. Debnath, A. Shusterman, C. Hansch. *Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity*, Journal of Medicinal Chemistry 34(2):786–797, 1991. DOI: [10.1021/jm00106a046](https://doi.org/10.1021/jm00106a046)
144
145
***[D'03]** P. D. Dobson, A. J. Doig. *Distinguishing enzyme structures from non-enzymes without alignments*, Journal of Molecular Biology 330(4):771–783, 2003. DOI: [10.1016/S0022-2836(03)00628-4](https://doi.org/10.1016/S0022-2836(03)00628-4)
145
146
***[H'14']** M. Houbraken, S. Demeyer, T. Michoel, P. Audenaert, D. Colle, M. Pickavet. *The Index-Based Subgraph Matching Algorithm with General Symmetries (ISMAGS): Exploiting Symmetry for Faster Subgraph Enumeration*, PLoS ONE 9(5):e97896, 2014. DOI: [10.1371/journal.pone.0097896](https://doi.org/10.1371/journal.pone.0097896).
147
+
***[K'16]** N. M. Kriege, P. L. Giscard, R. Wilson. *On Valid Optimal Assignment Kernels and Applications to Graph Classification*, 30th International Conference on Neural Information Processing Systems, pp. 1623–1631, 2016. URL: [here](https://proceedings.neurips.cc/paper_files/paper/2016/hash/0efe32849d230d7f53049ddc4a4b0c60-Abstract.html)
148
+
***[N'17]** A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, S. Jaiswal. *graph2vec: Learning Distributed Representations of Graphs*, 13th International Workshop on Mining and Learning with Graphs, p. 21, 2017. URL: [here](https://arxiv.org/abs/1707.05005)
146
149
***[P'22]** L. Potin, V. Labatut, R. Figueiredo, C. Largeron, P.-H. Morand. *FOPPA: A database of French Open Public Procurement Award notices*, Technical Report, Avignon University, 2022. [⟨hal-03796734⟩](https://hal.archives-ouvertes.fr/hal-03796734)
150
+
***[S'11]** N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, K. M. Borgwardt. *Weisfeiler-Lehman Graph Kernels*, Journal of Machine Learning Research 12:2539–2561, 2011. URL: [here](https://dl.acm.org/citation.cfm?id=2078187)
147
151
***[S'21]** Z. Shaul, S. Naaz. *cgSpan: Closed Graph-Based Substructure Pattern Mining, IEEE International Conference on Big Data, pp. 4989-4998, 2021. DOI: [10.1109/bigdata52589.2021.9671995](https://doi.org/10.1109/bigdata52589.2021.9671995)
148
152
***[T'03]** H. Toivonen, A. Srinivasan, R. D. King, S. Kramer, C. Helma. *Statistical evaluation of the predictive toxicology challenge 2000-2001*, Bioinformatics 19(10):1183–1193, 2003. DOI: [10.1093/bioinformatics/btg130](https://doi.org/10.1093/bioinformatics/btg130)
153
+
***[T'09]** M. Thoma, H. Cheng, A. Gretton, J. Han, H.-P. Kriegel, A. Smola, S. Le, P. S. Yu, X. Yan, K. Borgwardt. *Near-optimal supervised feature selection among frequent subgraphs*, SIAM International Conference on Data Mining, pp. 1076-1087, 2009. DOI: [10.1137/1.9781611972795.92](http://doi.org/10.1137/1.9781611972795.92)
149
154
***[W'06]** N. Wale, G. Karypis. *Comparison of descriptor spaces for chemical compound retrieval and classification*, 6th International Conference on Data Mining, pp. 678–689, 2006. DOI: [10.1007/s10115-007-0103-5](https://doi.org/10.1007/s10115-007-0103-5)
150
155
***[Y'02]** X. Yan, J. Han. *gSpan: Graph-based substructure pattern mining*, IEEE International Conference on Data Mining, pp.721-724, 2002. DOI: [10.1109/ICDM.2002.1184038](https://doi.org/10.1109/ICDM.2002.1184038)
151
-
***[C'04]** L. P. Cordella, P. Foggia, C. Sansone, M. Vento. *A (sub)graph isomorphism algorithm for matching large graphs*, IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(10):1367-1372, 2004. DOI: [10.1109/tpami.2004.75](https://doi.org/10.1109/tpami.2004.75)
152
-
*
156
+
***[Z'18]** D. Zhang, J. Yin, X. Zhu, C. Zhang. *Network Representation Learning: A Survey*, IEEE Transactions on Big Data 6(1):3–28, 2018. DOI: [10.1109/tbdata.2018.2850013](http://doi.org/10.1109/tbdata.2018.2850013)
0 commit comments