Replies: 1 comment
-
|
See #226 |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
When running two identifications using the files available (unitil 31 apr25) from
https://filesender.renater.fr/?s=download&token=f2292947-5146-4f99-8042-7112d44b0f85
we got the following from MS2rescore:
Reading PSMs from PSM file (1/2): 'D:/wraff/pxd001819_ups1/testSearchGUI4apr25/UPS1_125amol_R2_uncalibrated.sage.tsv'...
Reading PSMs from PSM file (2/2): 'D:/wraff/pxd001819_ups1/testSearchGUI4apr25/UPS1_125amol_R3_uncalibrated.sage.tsv'...
Removed 0 PSMs with rank >= 10.
Found 2444 PSMs, of which 24.06% are decoys.
Non-mapped modifications found: {'+15.994915', '+57.021465'}
This can be ignored if they are Unimod modification labels.
Found 649 identified PSMs with rank <= 1 at 0.01 FDR before rescoring.
Adding basic features to PSMs.
Adding MS²PIP-derived features to PSMs.
Running MS²PIP for PSMs from run (1/2)
UPS1_125amol_R2_uncalibrated...Downloading model_20210416_HCD2021_B.xgboost to C:\Users\wraff.ms2pip\model_20210416_HCD2021_B.xgboost...
Downloading model_20210416_HCD2021_Y.xgboost to C:\Users\wraff.ms2pip\model_20210416_HCD2021_Y.xgboost...
Processing spectra and peptides...
Running MS²PIP for PSMs from run (2/2)
UPS1_125amol_R3_uncalibrated...Processing spectra and peptides...
Adding DeepLC-derived features to PSMs.
Running DeepLC for PSMs from run (1/2):
UPS1_125amol_R2_uncalibrated...Running DeepLC for PSMs from run (2/2):
UPS1_125amol_R3_uncalibrated...Removed 0 PSMs with rank >= 1.
Failed in nopython mode pipeline (step: nopython frontend)
�[1m�[1mnon-precise type array(pyobject, 1d, C)�[0m
�[0m�[1mDuring: typing of argument at mokapot\qvalues.py (176)�[0m
�[1m
File "mokapot\qvalues.py", line 176:�[0m
�[1mdef crosslink_tdc(scores, num_targets, desc=True):
�[[email protected]
�[0m�[1m^�[0m�[0m
Traceback (most recent call last):
File "ms2rescore\gui\function2ctk.py", line 301, in run
self.fn(*self.fn_args, **self.fn_kwargs)
File "ms2rescore\gui\app.py", line 809, in function
rescore(configuration=config)
File "ms2rescore\core.py", line 159, in rescore
psm_list = _calculate_confidence(psm_list)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "ms2rescore\core.py", line 307, in _calculate_confidence
new_confidence = lin_psm_data.assign_confidence(scores=psm_list["score"])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "mokapot\dataset.py", line 607, in assign_confidence
return LinearConfidence(
^^^^^^^^^^^^^^^^^
File "mokapot\confidence.py", line 375, in init
self._assign_confidence(desc=desc)
File "mokapot\confidence.py", line 455, in _assign_confidence
data["mokapot q-value"] = qvalues.tdc(scores, targets, desc=True)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "mokapot\qvalues.py", line 99, in tdc
qvals = _fdr2qvalue(fdr, num_total, unique_metric, indices)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "numba\core\dispatcher.py", line 423, in _compile_for_args
File "numba\core\dispatcher.py", line 364, in error_rewrite
numba.core.errors.TypingError: Failed in nopython mode pipeline (step: nopython frontend)
�[1m�[1mnon-precise type array(pyobject, 1d, C)�[0m
�[0m�[1mDuring: typing of argument at mokapot\qvalues.py (176)�[0m
�[1m
File "mokapot\qvalues.py", line 176:�[0m
�[1mdef crosslink_tdc(scores, num_targets, desc=True):
�[[email protected]
�[0m�[1m^�[0m�[0m
Beta Was this translation helpful? Give feedback.
All reactions