Skip to content

Implement HTFA hierarchical optimization #61

@jeremymanning

Description

@jeremymanning

Summary

Implement the hierarchical optimization algorithm that extends TFA to multi-subject analysis.

Tasks

  • Implement global template computation across subjects
  • Add iterative optimization with global and local iterations
  • Implement MAP (Maximum A Posteriori) estimation
  • Add factor matching across subjects using linear sum assignment
  • Implement convergence checking for global template
  • Add proper handling of variable subject/voxel counts

Algorithm Details

  1. Initialize individual subject TFA models
  2. Compute global template from subject factors
  3. Iteratively:
    • Update subject models using global template information
    • Recompute global template
    • Check convergence
  4. Extract final parameters

Dependencies

References

Acceptance Criteria

  • HTFA can process multi-subject data
  • Global template converges across iterations
  • Subject-specific factors and weights are extracted
  • All unit tests pass

Metadata

Metadata

Assignees

No one assigned

    Labels

    enhancementNew feature or request

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions