-
Notifications
You must be signed in to change notification settings - Fork 0
Closed
Labels
enhancementNew feature or requestNew feature or request
Description
Summary
Implement the hierarchical optimization algorithm that extends TFA to multi-subject analysis.
Tasks
- Implement global template computation across subjects
- Add iterative optimization with global and local iterations
- Implement MAP (Maximum A Posteriori) estimation
- Add factor matching across subjects using linear sum assignment
- Implement convergence checking for global template
- Add proper handling of variable subject/voxel counts
Algorithm Details
- Initialize individual subject TFA models
- Compute global template from subject factors
- Iteratively:
- Update subject models using global template information
- Recompute global template
- Check convergence
- Extract final parameters
Dependencies
- Core TFA implementation (issue Implement core TFA optimization algorithm #60)
- SciPy for optimization
- Linear sum assignment algorithms
References
- BrainIAK HTFA implementation: https://github.com/brainiak/brainiak/blob/master/src/brainiak/factoranalysis/htfa.py
Acceptance Criteria
- HTFA can process multi-subject data
- Global template converges across iterations
- Subject-specific factors and weights are extracted
- All unit tests pass
Reactions are currently unavailable
Metadata
Metadata
Assignees
Labels
enhancementNew feature or requestNew feature or request