Skip to content

Synthetic Data Generation and Validation #70

@jeremymanning

Description

@jeremymanning

Implement comprehensive synthetic data generation based on the HTFA generative process and create validation framework for algorithm correctness.

Key Components

  • HTFA generative process implementation (V = WA + noise)
  • BIDS-formatted synthetic dataset creation
  • Parameter recovery tests with >95% accuracy requirements
  • Ground truth validation infrastructure
  • Statistical testing and validation metrics

Acceptance Criteria

  • Generate synthetic HTFA datasets with configurable parameters
  • Create valid BIDS directory structures with metadata
  • Implement >95% parameter recovery validation
  • Support multiple noise models and SNR levels
  • Provide comprehensive validation metrics and reports

Dependencies: Tasks 001, 002 (TFA and HTFA core algorithms)
Effort: Large (5-7 days)

Metadata

Metadata

Assignees

Labels

No labels
No labels

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions