|
| 1 | +--- |
| 2 | +marp: true |
| 3 | +theme: cdl-theme |
| 4 | +paginate: true |
| 5 | +header: 'PSYC 51.07: Models of Language and Communication' |
| 6 | +footer: '' |
| 7 | +--- |
| 8 | + |
| 9 | +<!-- _class: lead --> |
| 10 | + |
| 11 | +# Lecture 10: X-Hour Embeddings Workshop |
| 12 | +## Week 3: Hands-On Dimensionality Reduction and Word Vectors |
| 13 | + |
| 14 | +**PSYC 51.07: Models of Language and Communication** |
| 15 | + |
| 16 | +--- |
| 17 | + |
| 18 | +# Learning Objectives |
| 19 | + |
| 20 | +By the end of this session, you will: |
| 21 | + |
| 22 | +1. Implement classic dimensionality reduction (LSA, LDA) |
| 23 | +2. Train and analyze Word2Vec embeddings |
| 24 | +3. Visualize high-dimensional embeddings using UMAP |
| 25 | +4. Compare different embedding methods on real data |
| 26 | +5. Understand semantic relationships captured by embeddings |
| 27 | + |
| 28 | +**Workshop format:** Hands-on coding with the 20 Newsgroups dataset |
| 29 | + |
| 30 | +--- |
| 31 | + |
| 32 | +# Workshop Overview |
| 33 | + |
| 34 | +**Today's Agenda:** |
| 35 | + |
| 36 | +1. **Part 1:** Why embeddings? From sparse to dense representations |
| 37 | +2. **Part 2:** LSA - Latent Semantic Analysis with SVD |
| 38 | +3. **Part 3:** LDA - Latent Dirichlet Allocation for topic modeling |
| 39 | +4. **Part 4:** Word2Vec - Neural word embeddings |
| 40 | +5. **Part 5:** Visualizing embeddings with UMAP |
| 41 | +6. **Part 6:** Comparing methods and document classification |
| 42 | + |
| 43 | +**Companion notebook:** `xhour_embeddings_demo.ipynb` |
| 44 | + |
| 45 | +--- |
| 46 | + |
| 47 | +# Part 1: Why Embeddings? |
| 48 | + |
| 49 | +**The problem with sparse representations:** |
| 50 | + |
| 51 | +<div class="columns"> |
| 52 | +<div class="column"> |
| 53 | + |
| 54 | +**Last week (BoW, TF-IDF):** |
| 55 | +- High dimensional (vocab size) |
| 56 | +- Sparse (mostly zeros) |
| 57 | +- No semantic similarity |
| 58 | +- "dog" and "puppy" are orthogonal |
| 59 | + |
| 60 | +</div> |
| 61 | +<div class="column"> |
| 62 | + |
| 63 | +**Embeddings:** |
| 64 | +- Low dimensional (50-300 dims) |
| 65 | +- Dense (all non-zero) |
| 66 | +- Similar words cluster together |
| 67 | +- "dog" and "puppy" are close! |
| 68 | + |
| 69 | +</div> |
| 70 | +</div> |
| 71 | + |
| 72 | +--- |
| 73 | + |
| 74 | +# The Magic of Word Vectors |
| 75 | + |
| 76 | +**Famous example:** king - man + woman = queen |
| 77 | + |
| 78 | +<div class="callout info"> |
| 79 | +<div class="callout-title">Vector Arithmetic</div> |
| 80 | + |
| 81 | +Word embeddings capture semantic relationships as directions in space: |
| 82 | +- Gender direction: woman - man |
| 83 | +- Royalty direction: king - queen |
| 84 | +- Pluralization: words - word |
| 85 | + |
| 86 | +</div> |
| 87 | + |
| 88 | +**Key insight:** Meaning encoded as geometry! |
| 89 | + |
| 90 | +--- |
| 91 | + |
| 92 | +# Part 2: Latent Semantic Analysis (LSA) |
| 93 | + |
| 94 | +**Using SVD to find latent topics:** |
| 95 | + |
| 96 | +$$X \approx U_k \Sigma_k V_k^T$$ |
| 97 | + |
| 98 | +<div class="columns"> |
| 99 | +<div class="column"> |
| 100 | + |
| 101 | +**Algorithm:** |
| 102 | +1. Build TF-IDF matrix $X$ |
| 103 | +2. Apply Singular Value Decomposition |
| 104 | +3. Keep top $k$ dimensions |
| 105 | +4. Use $U_k$ as word embeddings |
| 106 | + |
| 107 | +</div> |
| 108 | +<div class="column"> |
| 109 | + |
| 110 | +**Interpretation:** |
| 111 | +- $U$: word-topic associations |
| 112 | +- $\Sigma$: topic strengths |
| 113 | +- $V^T$: doc-topic associations |
| 114 | + |
| 115 | +</div> |
| 116 | +</div> |
| 117 | + |
| 118 | +--- |
| 119 | + |
| 120 | +# LSA in Code |
| 121 | + |
| 122 | +```python |
| 123 | +from sklearn.decomposition import TruncatedSVD |
| 124 | +from sklearn.feature_extraction.text import TfidfVectorizer |
| 125 | + |
| 126 | +# Build TF-IDF matrix |
| 127 | +tfidf = TfidfVectorizer(max_features=5000, stop_words='english') |
| 128 | +tfidf_matrix = tfidf.fit_transform(documents) |
| 129 | + |
| 130 | +# Apply LSA |
| 131 | +lsa = TruncatedSVD(n_components=100, random_state=42) |
| 132 | +doc_embeddings = lsa.fit_transform(tfidf_matrix) |
| 133 | +word_embeddings = lsa.components_.T |
| 134 | + |
| 135 | +print(f"Explained variance: {lsa.explained_variance_ratio_.sum():.2%}") |
| 136 | +``` |
| 137 | + |
| 138 | +**Try it:** Find similar words using cosine similarity! |
| 139 | + |
| 140 | +--- |
| 141 | + |
| 142 | +# Part 3: LDA for Topic Modeling |
| 143 | + |
| 144 | +**A probabilistic approach:** |
| 145 | + |
| 146 | +<div class="callout tip"> |
| 147 | +<div class="callout-title">Generative Story</div> |
| 148 | + |
| 149 | +LDA imagines documents are created by: |
| 150 | +1. Choosing a mixture of topics |
| 151 | +2. For each word, picking a topic |
| 152 | +3. Sampling a word from that topic |
| 153 | + |
| 154 | +</div> |
| 155 | + |
| 156 | +**Key difference from LSA:** |
| 157 | +- Probabilistic interpretation |
| 158 | +- Non-negative weights |
| 159 | +- More interpretable topics |
| 160 | + |
| 161 | +--- |
| 162 | + |
| 163 | +# LDA Example Output |
| 164 | + |
| 165 | +```python |
| 166 | +Topic 0: hockey, game, team, player, season, nhl, play |
| 167 | +Topic 1: space, nasa, launch, orbit, shuttle, satellite |
| 168 | +Topic 2: computer, software, program, file, windows, system |
| 169 | +Topic 3: medical, doctor, patient, disease, health, treatment |
| 170 | +Topic 4: government, president, congress, law, political |
| 171 | +``` |
| 172 | + |
| 173 | +<div class="callout info"> |
| 174 | + |
| 175 | +Each document is a **mixture** of topics: |
| 176 | +Document #42: 60% Space + 25% Computer + 15% Other |
| 177 | + |
| 178 | +</div> |
| 179 | + |
| 180 | +--- |
| 181 | + |
| 182 | +# Part 4: Word2Vec |
| 183 | + |
| 184 | +**Learning embeddings from context:** |
| 185 | + |
| 186 | +<div class="columns"> |
| 187 | +<div class="column"> |
| 188 | + |
| 189 | +**Skip-gram:** |
| 190 | +Given target word, predict context |
| 191 | + |
| 192 | +"The **cat** sat on mat" |
| 193 | +- cat → the, sat, on |
| 194 | + |
| 195 | +**CBOW:** |
| 196 | +Given context, predict target |
| 197 | + |
| 198 | +the, sat, on → **cat** |
| 199 | + |
| 200 | +</div> |
| 201 | +<div class="column"> |
| 202 | + |
| 203 | +```python |
| 204 | +from gensim.models import Word2Vec |
| 205 | + |
| 206 | +model = Word2Vec( |
| 207 | + sentences=tokenized_docs, |
| 208 | + vector_size=100, |
| 209 | + window=5, |
| 210 | + min_count=5, |
| 211 | + sg=1 # Skip-gram |
| 212 | +) |
| 213 | +``` |
| 214 | + |
| 215 | +</div> |
| 216 | +</div> |
| 217 | + |
| 218 | +--- |
| 219 | + |
| 220 | +# Word2Vec: Semantic Similarity |
| 221 | + |
| 222 | +```python |
| 223 | +# Find similar words |
| 224 | +model.wv.most_similar('computer', topn=5) |
| 225 | +# [('software', 0.82), ('program', 0.79), ('system', 0.75), ...] |
| 226 | + |
| 227 | +# Word analogies |
| 228 | +model.wv.most_similar( |
| 229 | + positive=['woman', 'king'], |
| 230 | + negative=['man'] |
| 231 | +) |
| 232 | +# [('queen', 0.71), ...] |
| 233 | +``` |
| 234 | + |
| 235 | +<div class="callout warning"> |
| 236 | +<div class="callout-title">Hands-on Exercise</div> |
| 237 | + |
| 238 | +Try creating your own word analogies! What works? What fails? |
| 239 | + |
| 240 | +</div> |
| 241 | + |
| 242 | +--- |
| 243 | + |
| 244 | +# Part 5: Visualizing with UMAP |
| 245 | + |
| 246 | +**Projecting 100D → 2D:** |
| 247 | + |
| 248 | +```python |
| 249 | +import umap |
| 250 | + |
| 251 | +reducer = umap.UMAP( |
| 252 | + n_neighbors=15, |
| 253 | + min_dist=0.1, |
| 254 | + metric='cosine' |
| 255 | +) |
| 256 | + |
| 257 | +embeddings_2d = reducer.fit_transform(word_vectors) |
| 258 | +``` |
| 259 | + |
| 260 | +**UMAP advantages:** |
| 261 | +- Faster than t-SNE |
| 262 | +- Preserves global structure |
| 263 | +- Better cluster separation |
| 264 | + |
| 265 | +--- |
| 266 | + |
| 267 | +# What You Should See |
| 268 | + |
| 269 | +When you visualize embeddings: |
| 270 | + |
| 271 | +<div class="columns"> |
| 272 | +<div class="column"> |
| 273 | + |
| 274 | +**Sports cluster:** |
| 275 | +- hockey, baseball, player, team, game |
| 276 | + |
| 277 | +**Space cluster:** |
| 278 | +- nasa, shuttle, orbit, launch, space |
| 279 | + |
| 280 | +</div> |
| 281 | +<div class="column"> |
| 282 | + |
| 283 | +**Tech cluster:** |
| 284 | +- computer, software, program, windows |
| 285 | + |
| 286 | +**Medical cluster:** |
| 287 | +- doctor, patient, hospital, treatment |
| 288 | + |
| 289 | +</div> |
| 290 | +</div> |
| 291 | + |
| 292 | +<div class="callout tip"> |
| 293 | + |
| 294 | +Related words should cluster together even though we never told the model they were related! |
| 295 | + |
| 296 | +</div> |
| 297 | + |
| 298 | +--- |
| 299 | + |
| 300 | +# Part 6: Comparing Methods |
| 301 | + |
| 302 | +| Method | Speed | Interpretability | Quality | Data Needed | |
| 303 | +|--------|-------|------------------|---------|-------------| |
| 304 | +| LSA | Fast | Medium | Medium | Small-Medium | |
| 305 | +| LDA | Medium | High | Medium | Medium | |
| 306 | +| Word2Vec | Medium | Low | High | Large | |
| 307 | + |
| 308 | +**Recommendations:** |
| 309 | +- **Quick exploration:** LSA |
| 310 | +- **Interpretable topics:** LDA |
| 311 | +- **Best semantic quality:** Word2Vec |
| 312 | + |
| 313 | +--- |
| 314 | + |
| 315 | +# Document Classification with Embeddings |
| 316 | + |
| 317 | +**Using embeddings as features:** |
| 318 | + |
| 319 | +```python |
| 320 | +def document_vector(doc, model): |
| 321 | + """Average word vectors for document.""" |
| 322 | + tokens = preprocess(doc) |
| 323 | + vectors = [model.wv[w] for w in tokens if w in model.wv] |
| 324 | + return np.mean(vectors, axis=0) if vectors else np.zeros(100) |
| 325 | + |
| 326 | +# Train classifier |
| 327 | +X_train = [document_vector(doc, w2v) for doc in train_docs] |
| 328 | +clf = LogisticRegression() |
| 329 | +clf.fit(X_train, y_train) |
| 330 | +``` |
| 331 | + |
| 332 | +**Compare to TF-IDF baseline!** |
| 333 | + |
| 334 | +--- |
| 335 | + |
| 336 | +# Key Takeaways |
| 337 | + |
| 338 | +1. **Embeddings capture semantic meaning** - similar words have similar vectors |
| 339 | + |
| 340 | +2. **Different methods, different strengths:** |
| 341 | + - LSA: Fast, linear, interpretable |
| 342 | + - LDA: Probabilistic, topic-focused |
| 343 | + - Word2Vec: Neural, best for similarity |
| 344 | + |
| 345 | +3. **Visualization reveals structure** - UMAP shows semantic clusters |
| 346 | + |
| 347 | +4. **Limitations:** |
| 348 | + - Static (one vector per word, no context) |
| 349 | + - Requires substantial data |
| 350 | + - Can encode biases |
| 351 | + |
| 352 | +**Next week:** Contextual embeddings (BERT, GPT)! |
| 353 | + |
| 354 | +--- |
| 355 | + |
| 356 | +# Discussion Questions |
| 357 | + |
| 358 | +1. **Why does vector arithmetic work?** What does "king - man + woman" really mean geometrically? |
| 359 | + |
| 360 | +2. **Bias in embeddings:** If Word2Vec learns from news articles, what biases might it capture? |
| 361 | + |
| 362 | +3. **Window size matters:** What happens with window=2 vs window=10? |
| 363 | + |
| 364 | +4. **Out-of-vocabulary problem:** How do you handle words not in your vocabulary? |
| 365 | + |
| 366 | +5. **When to use what:** For a sentiment analysis task, would you choose LSA, LDA, or Word2Vec? |
| 367 | + |
| 368 | +--- |
| 369 | + |
| 370 | +# Next Steps |
| 371 | + |
| 372 | +**For Assignment 2:** |
| 373 | +- Use embeddings to improve your classifier |
| 374 | +- Compare at least 2 embedding methods |
| 375 | +- Visualize your embeddings |
| 376 | + |
| 377 | +**Coming up in Lecture 11:** |
| 378 | +- Modern neural word embeddings |
| 379 | +- GloVe and FastText |
| 380 | +- Subword tokenization |
| 381 | + |
| 382 | +**Office hours:** Available if you need help with the notebook! |
0 commit comments