Skip to content

Commit d5908f4

Browse files
committed
deploy: 14cdb84
1 parent 0bd6842 commit d5908f4

File tree

8 files changed

+29
-38
lines changed

8 files changed

+29
-38
lines changed

.buildinfo

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
# Sphinx build info version 1
22
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
3-
config: 0427e3b1febb1cd3abd56557eed81678
3+
config: e9a4eab4ea018d73e925b33924d89411
44
tags: 645f666f9bcd5a90fca523b33c5a78b7

_sources/assignments/Assignment_1:Hopfield_Networks/README.md

Lines changed: 8 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -111,25 +111,16 @@ Create a heatmap:
111111

112112
#### Visualization 2
113113

114-
Plot the expected number of accurately retrieved memories vs. network size.
115-
116-
Let:
117-
118-
- $P[m, N] \in [0, 1]$: proportion of $m$ memories accurately retrieved in a network of size $N$
119-
- $\mathbb{E}[R_N]$: expected number of successfully retrieved memories
120-
121-
Then:
122-
123-
$$
124-
\mathbb{E}[R_N] = \sum_{m=1}^{M} m \cdot P[m, N]
125-
$$
126-
127-
Where $M$ is the maximum number of memories tested.
114+
Plot the estimated number of accurately retrieved memories as a function of network size.
115+
You can use the heatmap you made above to estimate the number of accurately retrieved memories:
116+
- Choose a target proportion (e.g., $p = 0.8$ or similar)
117+
- For each network size you tested to make your heatmap, compute the maximum number of memories for which at least proportion $p$ were successfully retrieved
128118

129119
#### Follow-Up
130120

131121
- What relationship (if any) emerges between network size and capacity?
132122
- Can you develop rules or intuitions that help predict a network’s capacity?
123+
- Hint: see page 3 of [Amit et al. (1985)](https://www.dropbox.com/scl/fi/3a3adwqf70afb9kmieezn/AmitEtal85.pdf?rlkey=78fckvuuvk9t3o9fbpjrmn6de)
133124

134125
---
135126

@@ -211,7 +202,7 @@ $$
211202
Context drift:
212203

213204
- Set $\text{context}^1$ randomly
214-
- For each subsequent $\text{context}^{t+1}$, copy $\text{context}^t$ and flip ~5% of the bits
205+
- For each subsequent $\text{context}^{t+1}$, copy $\text{context}^t$ and flip ~10% of the bits
215206

216207
#### Simulation Procedure
217208

@@ -221,12 +212,12 @@ Context drift:
221212
- Set item neurons to 0
222213
- Run until convergence
223214
- For each stored memory $j$, compare recovered item to $\text{item}^j$
224-
- If ≥99% of bits match, record $j$ as retrieved
215+
- If ≥75% of bits match, record $j$ as retrieved
225216
- Record $\Delta = j - i$ (relative offset)
226217

227218
#### Analysis
228219

229-
- Repeat the procedure (e.g., 100 trials)
220+
- Repeat the procedure (e.g., 100 trials). Note that you will need to "reset" the network (i.e., start with an empty weight matrix and re-encode the 10 memories) each time you repeat the simulation.
230221
- For each $\Delta \in [-9, +9]$, compute:
231222
- Probability of retrieval
232223
- 95% confidence interval

_sources/assignments/Assignment_2:Search_of_Associative_Memory_Model/README.md

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
# Assignment 2: Search of Associative Memory (SAM) Model
22

33
## Overview
4-
In this assignment, you will implement the **Search of Associative Memory (SAM) model** as described in [Atkinson & Shiffrin (1968)](https://www.dropbox.com/scl/fi/rpllozjcv704okckjdy5k/AtkiShif68.pdf?rlkey=i0azhj9mqxws7bxocbl65j88d&dl=1). The SAM model is a probabilistic model of free recall that assumes items are stored in **short-term memory (STS)** and **long-term memory (LTS)**, with retrieval governed by associative processes. You will fit your implementation to [Murdock (1962)](https://www.dropbox.com/scl/fi/k7jc1b6uua4m915maglpl/Murd62.pdf?rlkey=i5nc7lzb2pw8dxc6xc72r5r5i&dl=1) free recall data and evaluate how well the model explains the observed recall patterns.
4+
In this assignment, you will implement the **Search of Associative Memory (SAM) model** as described in [Kahana (2012), Chapter 7](https://www.dropbox.com/scl/fi/ujl8yvxqzcb1gf32to4zb/Kaha12_SAM_model_excerpt.pdf?rlkey=254wtw4fm7xnpzelno2ykrxzu). The SAM model is a probabilistic model of free recall that assumes items are stored in **short-term memory (STS)** and **long-term memory (LTS)**, with retrieval governed by associative processes. You will fit your implementation to [Murdock (1962)](https://www.dropbox.com/scl/fi/k7jc1b6uua4m915maglpl/Murd62.pdf?rlkey=i5nc7lzb2pw8dxc6xc72r5r5i&dl=1) free recall data and evaluate how well the model explains the observed recall patterns.
55

66
## Data Format and Preprocessing
77
The dataset consists of sequences of recalled items from multiple trials of a free recall experiment. Each row represents a participant’s recall sequence from a single list presentation.
@@ -20,6 +20,8 @@ The dataset consists of sequences of recalled items from multiple trials of a fr
2020

2121
## Model Description
2222

23+
*NOTE: NEED TO UPDATE THIS!!! Don't start this assignment quite yet...*
24+
2325
You will implement and fit a **Search of Associative Memory (SAM)** model that consists of:
2426

2527
### 1. **Encoding Stage: Memory Storage**
@@ -140,7 +142,7 @@ Each plot should include:
140142
- Identifies strengths and weaknesses of SAM.
141143

142144
## Submission Instructions
143-
- Submit a **Google Colaboratory notebook** (or similar) that includes:
145+
- [Submit](https://canvas.dartmouth.edu/courses/71051/assignments/517354) a **Google Colaboratory notebook** (or similar) that includes:
144146
- Your **full implementation** of the SAM model.
145147
- **Markdown cells** explaining your code, methodology, and results.
146148
- **All required plots** comparing model predictions to observed data.

_sources/outline.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,8 @@ Note: papers that report on models we will be implementing in the assignments ar
2222
- free recall and memory search
2323
- naturalistic memory tasks
2424
- Readings:
25-
- [Atkinson and Shiffrin (1968)](https://www.dropbox.com/scl/fi/rpllozjcv704okckjdy5k/AtkiShif68.pdf?rlkey=i0azhj9mqxws7bxocbl65j88d)*
25+
- [Atkinson and Shiffrin (1968)](https://www.dropbox.com/scl/fi/rpllozjcv704okckjdy5k/AtkiShif68.pdf?rlkey=i0azhj9mqxws7bxocbl65j88d)
26+
- [Kahana (2012), excerpt from Chapter 7](https://www.dropbox.com/scl/fi/ujl8yvxqzcb1gf32to4zb/Kaha12_SAM_model_excerpt.pdf?rlkey=254wtw4fm7xnpzelno2ykrxzu)*
2627
- [Chen et al. (2016)](https://www.dropbox.com/scl/fi/wg6fledn7g88ig5mk3kob/ChenEtal16.pdf?rlkey=9jqu7y2apqv2hrj8qepn4alwa)
2728
- [Heusser et al. (2021)](https://www.dropbox.com/scl/fi/w7z2yvdfzmhowh5hvg53e/HeusEtal21.pdf?rlkey=omad9klqeiu2kc71w7guc5xxq)
2829
- Data science primer:

assignments/Assignment_1:Hopfield_Networks/README.html

Lines changed: 8 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -579,24 +579,19 @@ <h4>Visualization 1<a class="headerlink" href="#visualization-1" title="Link to
579579
</section>
580580
<section id="visualization-2">
581581
<h4>Visualization 2<a class="headerlink" href="#visualization-2" title="Link to this heading">#</a></h4>
582-
<p>Plot the expected number of accurately retrieved memories vs. network size.</p>
583-
<p>Let:</p>
582+
<p>Plot the estimated number of accurately retrieved memories as a function of network size.
583+
You can use the heatmap you made above to estimate the number of accurately retrieved memories:</p>
584584
<ul class="simple">
585-
<li><p><span class="math notranslate nohighlight">\(P[m, N] \in [0, 1]\)</span>: proportion of <span class="math notranslate nohighlight">\(m\)</span> memories accurately retrieved in a network of size <span class="math notranslate nohighlight">\(N\)</span></p></li>
586-
<li><p><span class="math notranslate nohighlight">\(\mathbb{E}[R_N]\)</span>: expected number of successfully retrieved memories</p></li>
585+
<li><p>Choose a target proportion (e.g., <span class="math notranslate nohighlight">\(p = 0.8\)</span> or similar)</p></li>
586+
<li><p>For each network size you tested to make your heatmap, compute the maximum number of memories for which at least proportion <span class="math notranslate nohighlight">\(p\)</span> were successfully retrieved</p></li>
587587
</ul>
588-
<p>Then:</p>
589-
<div class="math notranslate nohighlight">
590-
\[
591-
\mathbb{E}[R_N] = \sum_{m=1}^{M} m \cdot P[m, N]
592-
\]</div>
593-
<p>Where <span class="math notranslate nohighlight">\(M\)</span> is the maximum number of memories tested.</p>
594588
</section>
595589
<section id="follow-up">
596590
<h4>Follow-Up<a class="headerlink" href="#follow-up" title="Link to this heading">#</a></h4>
597591
<ul class="simple">
598592
<li><p>What relationship (if any) emerges between network size and capacity?</p></li>
599593
<li><p>Can you develop rules or intuitions that help predict a network’s capacity?</p></li>
594+
<li><p>Hint: see page 3 of <a class="reference external" href="https://www.dropbox.com/scl/fi/3a3adwqf70afb9kmieezn/AmitEtal85.pdf?rlkey=78fckvuuvk9t3o9fbpjrmn6de">Amit et al. (1985)</a></p></li>
600595
</ul>
601596
</section>
602597
</section>
@@ -702,7 +697,7 @@ <h4>Setup: Item–Context Representation<a class="headerlink" href="#setup-itemc
702697
<p>Context drift:</p>
703698
<ul class="simple">
704699
<li><p>Set <span class="math notranslate nohighlight">\(\text{context}^1\)</span> randomly</p></li>
705-
<li><p>For each subsequent <span class="math notranslate nohighlight">\(\text{context}^{t+1}\)</span>, copy <span class="math notranslate nohighlight">\(\text{context}^t\)</span> and flip ~5% of the bits</p></li>
700+
<li><p>For each subsequent <span class="math notranslate nohighlight">\(\text{context}^{t+1}\)</span>, copy <span class="math notranslate nohighlight">\(\text{context}^t\)</span> and flip ~10% of the bits</p></li>
706701
</ul>
707702
</section>
708703
<section id="id4">
@@ -715,7 +710,7 @@ <h4>Simulation Procedure<a class="headerlink" href="#id4" title="Link to this he
715710
<li><p>Set item neurons to 0</p></li>
716711
<li><p>Run until convergence</p></li>
717712
<li><p>For each stored memory <span class="math notranslate nohighlight">\(j\)</span>, compare recovered item to <span class="math notranslate nohighlight">\(\text{item}^j\)</span></p></li>
718-
<li><p>If ≥99% of bits match, record <span class="math notranslate nohighlight">\(j\)</span> as retrieved</p></li>
713+
<li><p>If ≥75% of bits match, record <span class="math notranslate nohighlight">\(j\)</span> as retrieved</p></li>
719714
<li><p>Record <span class="math notranslate nohighlight">\(\Delta = j - i\)</span> (relative offset)</p></li>
720715
</ul>
721716
</li>
@@ -724,7 +719,7 @@ <h4>Simulation Procedure<a class="headerlink" href="#id4" title="Link to this he
724719
<section id="id5">
725720
<h4>Analysis<a class="headerlink" href="#id5" title="Link to this heading">#</a></h4>
726721
<ul class="simple">
727-
<li><p>Repeat the procedure (e.g., 100 trials)</p></li>
722+
<li><p>Repeat the procedure (e.g., 100 trials). Note that you will need to “reset” the network (i.e., start with an empty weight matrix and re-encode the 10 memories) each time you repeat the simulation.</p></li>
728723
<li><p>For each <span class="math notranslate nohighlight">\(\Delta \in [-9, +9]\)</span>, compute:</p>
729724
<ul>
730725
<li><p>Probability of retrieval</p></li>

assignments/Assignment_2:Search_of_Associative_Memory_Model/README.html

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -467,7 +467,7 @@ <h2> Contents </h2>
467467
<h1>Assignment 2: Search of Associative Memory (SAM) Model<a class="headerlink" href="#assignment-2-search-of-associative-memory-sam-model" title="Link to this heading">#</a></h1>
468468
<section id="overview">
469469
<h2>Overview<a class="headerlink" href="#overview" title="Link to this heading">#</a></h2>
470-
<p>In this assignment, you will implement the <strong>Search of Associative Memory (SAM) model</strong> as described in <a class="reference external" href="https://www.dropbox.com/scl/fi/rpllozjcv704okckjdy5k/AtkiShif68.pdf?rlkey=i0azhj9mqxws7bxocbl65j88d&amp;amp;dl=1">Atkinson &amp; Shiffrin (1968)</a>. The SAM model is a probabilistic model of free recall that assumes items are stored in <strong>short-term memory (STS)</strong> and <strong>long-term memory (LTS)</strong>, with retrieval governed by associative processes. You will fit your implementation to <a class="reference external" href="https://www.dropbox.com/scl/fi/k7jc1b6uua4m915maglpl/Murd62.pdf?rlkey=i5nc7lzb2pw8dxc6xc72r5r5i&amp;amp;dl=1">Murdock (1962)</a> free recall data and evaluate how well the model explains the observed recall patterns.</p>
470+
<p>In this assignment, you will implement the <strong>Search of Associative Memory (SAM) model</strong> as described in <a class="reference external" href="https://www.dropbox.com/scl/fi/ujl8yvxqzcb1gf32to4zb/Kaha12_SAM_model_excerpt.pdf?rlkey=254wtw4fm7xnpzelno2ykrxzu">Kahana (2012), Chapter 7</a>. The SAM model is a probabilistic model of free recall that assumes items are stored in <strong>short-term memory (STS)</strong> and <strong>long-term memory (LTS)</strong>, with retrieval governed by associative processes. You will fit your implementation to <a class="reference external" href="https://www.dropbox.com/scl/fi/k7jc1b6uua4m915maglpl/Murd62.pdf?rlkey=i5nc7lzb2pw8dxc6xc72r5r5i&amp;amp;dl=1">Murdock (1962)</a> free recall data and evaluate how well the model explains the observed recall patterns.</p>
471471
</section>
472472
<section id="data-format-and-preprocessing">
473473
<h2>Data Format and Preprocessing<a class="headerlink" href="#data-format-and-preprocessing" title="Link to this heading">#</a></h2>
@@ -487,6 +487,7 @@ <h2>Data Format and Preprocessing<a class="headerlink" href="#data-format-and-pr
487487
</section>
488488
<section id="model-description">
489489
<h2>Model Description<a class="headerlink" href="#model-description" title="Link to this heading">#</a></h2>
490+
<p><em>NOTE: NEED TO UPDATE THIS!!! Don’t start this assignment quite yet…</em></p>
490491
<p>You will implement and fit a <strong>Search of Associative Memory (SAM)</strong> model that consists of:</p>
491492
<section id="encoding-stage-memory-storage">
492493
<h3>1. <strong>Encoding Stage: Memory Storage</strong><a class="headerlink" href="#encoding-stage-memory-storage" title="Link to this heading">#</a></h3>
@@ -671,7 +672,7 @@ <h2>Grading Criteria<a class="headerlink" href="#grading-criteria" title="Link t
671672
<section id="submission-instructions">
672673
<h2>Submission Instructions<a class="headerlink" href="#submission-instructions" title="Link to this heading">#</a></h2>
673674
<ul class="simple">
674-
<li><p>Submit a <strong>Google Colaboratory notebook</strong> (or similar) that includes:</p>
675+
<li><p><a class="reference external" href="https://canvas.dartmouth.edu/courses/71051/assignments/517354">Submit</a> a <strong>Google Colaboratory notebook</strong> (or similar) that includes:</p>
675676
<ul>
676677
<li><p>Your <strong>full implementation</strong> of the SAM model.</p></li>
677678
<li><p><strong>Markdown cells</strong> explaining your code, methodology, and results.</p></li>

outline.html

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -476,7 +476,8 @@ <h2>Weeks 2–3: Free recall, Short Term and Long Term Memory<a class="headerlin
476476
</li>
477477
<li><p>Readings:</p>
478478
<ul>
479-
<li><p><a class="reference external" href="https://www.dropbox.com/scl/fi/rpllozjcv704okckjdy5k/AtkiShif68.pdf?rlkey=i0azhj9mqxws7bxocbl65j88d">Atkinson and Shiffrin (1968)</a>*</p></li>
479+
<li><p><a class="reference external" href="https://www.dropbox.com/scl/fi/rpllozjcv704okckjdy5k/AtkiShif68.pdf?rlkey=i0azhj9mqxws7bxocbl65j88d">Atkinson and Shiffrin (1968)</a></p></li>
480+
<li><p><a class="reference external" href="https://www.dropbox.com/scl/fi/ujl8yvxqzcb1gf32to4zb/Kaha12_SAM_model_excerpt.pdf?rlkey=254wtw4fm7xnpzelno2ykrxzu">Kahana (2012), excerpt from Chapter 7</a>*</p></li>
480481
<li><p><a class="reference external" href="https://www.dropbox.com/scl/fi/wg6fledn7g88ig5mk3kob/ChenEtal16.pdf?rlkey=9jqu7y2apqv2hrj8qepn4alwa">Chen et al. (2016)</a></p></li>
481482
<li><p><a class="reference external" href="https://www.dropbox.com/scl/fi/w7z2yvdfzmhowh5hvg53e/HeusEtal21.pdf?rlkey=omad9klqeiu2kc71w7guc5xxq">Heusser et al. (2021)</a></p></li>
482483
</ul>

searchindex.js

Lines changed: 1 addition & 1 deletion
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

0 commit comments

Comments
 (0)