|
| 1 | +import numpy as np |
| 2 | +import pytest |
| 3 | +from torchvision.transforms import ToTensor |
| 4 | +from torch.utils.data import DataLoader |
| 5 | +import torch |
| 6 | + |
| 7 | +from continuum.datasets import InMemoryDataset |
| 8 | +from continuum.scenarios import ClassIncremental, InstanceIncremental, ContinualScenario |
| 9 | + |
| 10 | + |
| 11 | +@pytest.fixture |
| 12 | +def dataset(): |
| 13 | + x = np.random.randint(0, 255, (100, 4, 4, 3), dtype=np.uint8) |
| 14 | + y = np.random.randint(0, 3, (100,), dtype=np.int16) |
| 15 | + t = np.ones_like(y) |
| 16 | + |
| 17 | + t[:30] = 0 |
| 18 | + t[30:60] = 1 |
| 19 | + t[60:] = 2 |
| 20 | + |
| 21 | + return InMemoryDataset(x, y, t) |
| 22 | + |
| 23 | + |
| 24 | + |
| 25 | +@pytest.mark.parametrize("scenario,opt", [ |
| 26 | + (ClassIncremental, {'increment': 1}), |
| 27 | + (InstanceIncremental, {}), |
| 28 | + (ContinualScenario, {}) |
| 29 | +]) |
| 30 | +def test_same_transforms(dataset, scenario, opt): |
| 31 | + trsfs = [ |
| 32 | + ToTensor(), |
| 33 | + lambda tensor: tensor.fill_(0) |
| 34 | + ] |
| 35 | + s = scenario(dataset, transformations=trsfs, **opt) |
| 36 | + |
| 37 | + for taskset in s: |
| 38 | + loader = DataLoader(taskset) |
| 39 | + for x, _, _ in loader: |
| 40 | + assert torch.unique(x).numpy().tolist() == [0] |
| 41 | + |
| 42 | + |
| 43 | +@pytest.mark.parametrize("scenario,opt", [ |
| 44 | + (ClassIncremental, {'increment': 1}), |
| 45 | + (InstanceIncremental, {}), |
| 46 | + (ContinualScenario, {}) |
| 47 | +]) |
| 48 | +def test_diff_transforms(dataset, scenario, opt): |
| 49 | + trsfs = [ |
| 50 | + [ToTensor(), lambda tensor1: tensor1.fill_(0)], |
| 51 | + [ToTensor(), lambda tensor2: tensor2.fill_(1)], |
| 52 | + [ToTensor(), lambda tensor3: tensor3.fill_(2)], |
| 53 | + ] |
| 54 | + s = scenario(dataset, transformations=trsfs, **opt) |
| 55 | + |
| 56 | + for taskid, taskset in enumerate(s): |
| 57 | + loader = DataLoader(taskset) |
| 58 | + for x, _, _ in loader: |
| 59 | + assert torch.unique(x).numpy().tolist() == [taskid] |
| 60 | + |
| 61 | + |
| 62 | +@pytest.mark.parametrize("scenario,opt,error", [ |
| 63 | + (ClassIncremental, {'increment': 1}, True), |
| 64 | + (InstanceIncremental, {}, True), |
| 65 | + (ContinualScenario, {}, True), |
| 66 | + (ClassIncremental, {'increment': 1}, False), |
| 67 | + (InstanceIncremental, {}, False), |
| 68 | + (ContinualScenario, {}, False) |
| 69 | +]) |
| 70 | +def test_diff_transforms_slice(dataset, scenario, opt, error): |
| 71 | + trsfs = [ |
| 72 | + [ToTensor(), lambda tensor1: tensor1.fill_(0)], |
| 73 | + [ToTensor(), lambda tensor2: tensor2.fill_(1)], |
| 74 | + [ToTensor(), lambda tensor3: tensor3.fill_(2)], |
| 75 | + ] |
| 76 | + s = scenario(dataset, transformations=trsfs, **opt) |
| 77 | + |
| 78 | + for taskid in range(len(s)): |
| 79 | + if not error: |
| 80 | + taskset = s[taskid] |
| 81 | + loader = DataLoader(taskset) |
| 82 | + for x, _, _ in loader: |
| 83 | + assert torch.unique(x).numpy().tolist() == [taskid] |
| 84 | + else: |
| 85 | + with pytest.raises(ValueError): |
| 86 | + s[:taskid] |
| 87 | + |
| 88 | + |
| 89 | + |
| 90 | + |
| 91 | + |
0 commit comments