@@ -76,6 +76,7 @@ def compute_poly_metric(
7676
7777 # GT data preparation
7878 if dataset_dict is None or 'stars' not in dataset_dict :
79+ print ('Regenerating GT stars from model.' )
7980 # Change interpolation parameters for the GT simPSF
8081 interp_pts_per_bin = simPSF_np .interp_pts_per_bin
8182 simPSF_np .interp_pts_per_bin = 0
@@ -93,6 +94,7 @@ def compute_poly_metric(
9394 GT_preds = GT_tf_semiparam_field .predict (x = pred_inputs , batch_size = batch_size )
9495
9596 else :
97+ print ('Using GT stars from dataset.' )
9698 GT_preds = dataset_dict ['stars' ]
9799
98100
@@ -116,7 +118,12 @@ def compute_poly_metric(
116118
117119
118120def compute_mono_metric (
119- tf_semiparam_field , GT_tf_semiparam_field , simPSF_np , tf_pos , lambda_list , batch_size = 32
121+ tf_semiparam_field ,
122+ GT_tf_semiparam_field ,
123+ simPSF_np ,
124+ tf_pos ,
125+ lambda_list ,
126+ batch_size = 32
120127):
121128 """ Calculate metrics for monochromatic reconstructions.
122129
@@ -410,6 +417,7 @@ def compute_shape_metrics(
410417
411418 # GT data preparation
412419 if dataset_dict is None or 'super_res_stars' not in dataset_dict :
420+ print ('Generating GT super resolved stars from the GT model.' )
413421 # Change interpolation parameters for the GT simPSF
414422 interp_pts_per_bin = simPSF_np .interp_pts_per_bin
415423 simPSF_np .interp_pts_per_bin = 0
@@ -429,6 +437,7 @@ def compute_shape_metrics(
429437 GT_predictions = GT_tf_semiparam_field .predict (x = pred_inputs , batch_size = batch_size )
430438
431439 else :
440+ print ('Using super resolved stars from dataset.' )
432441 GT_predictions = dataset_dict ['super_res_stars' ]
433442
434443 # Calculate residuals
0 commit comments