|
| 1 | +import os |
| 2 | +from pownet.stochastic.solar import SolarTSModel |
| 3 | +from pownet.stochastic.demand import DemandTSModel |
| 4 | +import pandas as pd |
| 5 | +import matplotlib.pyplot as plt |
| 6 | + |
| 7 | +import logging |
| 8 | + |
| 9 | +# Show info |
| 10 | +logging.basicConfig(level=logging.INFO) |
| 11 | + |
| 12 | +# %% Demand |
| 13 | + |
| 14 | +data = pd.read_csv("../temp/hourly_demand_2023.csv") |
| 15 | + |
| 16 | +demand_model = DemandTSModel() |
| 17 | +demand_model.load_data(data) |
| 18 | +exog_vars = ["temp", "rhum", "prcp", "weekend"] |
| 19 | + |
| 20 | +# arima_order, seasonal_order = demand_model.find_best_model( |
| 21 | +# target_column="demand", |
| 22 | +# exog_vars=exog_vars, |
| 23 | +# ) |
| 24 | + |
| 25 | + |
| 26 | +demand_model.fit( |
| 27 | + target_column="demand", |
| 28 | + exog_vars=exog_vars, |
| 29 | + arima_order=(1, 0, 1), |
| 30 | + seasonal_order=(0, 0, 0, 0), |
| 31 | +) |
| 32 | +predictions = demand_model.predict() |
| 33 | + |
| 34 | +data.index = pd.to_datetime(data["datetime"]) |
| 35 | +exog_data = data[exog_vars].astype(float) |
| 36 | +synthetic = demand_model.get_synthetic(exog_data=exog_data) |
| 37 | + |
| 38 | + |
| 39 | +duration = 10 |
| 40 | +# plt.plot(predictions[: 24 * 3], label="Predictions") |
| 41 | +plt.plot(synthetic[: 24 * duration], label="Synthetic") |
| 42 | +plt.plot( |
| 43 | + data.set_index("datetime")["demand"].iloc[: 24 * duration], |
| 44 | + label="Actual", |
| 45 | +) |
| 46 | +plt.legend() |
| 47 | +plt.show() |
| 48 | + |
| 49 | +"""# %% Solar |
| 50 | +data = pd.read_csv("../temp/merra_2019.csv") |
| 51 | +
|
| 52 | +solar_model = SolarTSModel() |
| 53 | +solar_model.load_data(data) |
| 54 | +
|
| 55 | +solar_model.fit(target_column="ground_irradiance", arima_order=(2, 1, 2)) |
| 56 | +predictions = solar_model.predict() |
| 57 | +
|
| 58 | +resids = solar_model.pred_residuals""" |
| 59 | + |
| 60 | +# synthetic = solar_model.get_synthetic() |
| 61 | + |
| 62 | +# duration = 30 |
| 63 | +# # plt.plot(predictions[: 24 * 3], label="Predictions") |
| 64 | +# plt.plot(synthetic[: 24 * duration], label="Synthetic") |
| 65 | +# plt.plot( |
| 66 | +# data.set_index("datetime")["ground_irradiance"].iloc[: 24 * duration], |
| 67 | +# label="Actual", |
| 68 | +# ) |
| 69 | +# plt.legend() |
| 70 | +# plt.show() |
0 commit comments