Skip to content

Commit 350d9ed

Browse files
committed
deploy: 6e06922
1 parent 80b8140 commit 350d9ed

File tree

7 files changed

+13
-13
lines changed

7 files changed

+13
-13
lines changed

_sources/api/local.rst.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ This page documents local distribution treatment effect estimators that compute
55

66
Local distribution treatment effects (LDTE) and local probability treatment effects (LPTE) provide methods for causal inference that account for treatment assignment vs. treatment receipt differences. For theoretical foundations on imperfect compliance scenarios, see:
77

8-
* Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2024). *Beyond the Average: Distributional Causal Inference under Imperfect Compliance*. `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
8+
* Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2025). *Beyond the Average: Distributional Causal Inference under Imperfect Compliance*. `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
99

1010
SimpleLocalDistributionEstimator
1111
--------------------------------

_sources/api_reference.rst.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ The dte_adj package provides several types of estimators for computing distribut
1414
* **Utility Functions**: Helper functions for confidence intervals and statistical computations
1515
* **Plotting Utilities**: Visualization tools for treatment effects and distributions
1616

17-
For theoretical foundations, see Byambadalai et al. (2024) [#simple2024]_ for simple randomization, Byambadalai et al. (2025) [#car2025]_ for covariate-adaptive randomization, and Byambadalai et al. (2024) [#compliance2024]_ for imperfect compliance scenarios.
17+
For theoretical foundations, see Byambadalai et al. (2024) [#simple2024]_ for simple randomization, Byambadalai et al. (2025) [#car2025]_ for covariate-adaptive randomization, and Byambadalai et al. (2024) [#compliance2025]_ for imperfect compliance scenarios.
1818

1919
For multi-task learning approaches that train models for all locations simultaneously (using ``is_multi_task=True``), see the neural network framework in [#multitask2025]_.
2020

@@ -24,7 +24,7 @@ For multi-task learning approaches that train models for all locations simultane
2424
2525
.. [#multitask2025] Hirata, T., Byambadalai, U., Oka, T., Yasui, S., & Uto, S. (2025). Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks. arXiv preprint `arXiv:2507.07738 <https://arxiv.org/abs/2507.07738>`_.
2626
27-
.. [#compliance2024] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2024). Beyond the Average: Distributional Causal Inference under Imperfect Compliance. arXiv preprint `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
27+
.. [#compliance2025] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2025). Beyond the Average: Distributional Causal Inference under Imperfect Compliance. arXiv preprint `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
2828
2929
Detailed Documentation
3030
----------------------

_sources/index.rst.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -30,15 +30,15 @@ For theoretical foundations, see:
3030
* **Simple randomization**: Byambadalai et al. (2024) [#simple2024]_
3131
* **Covariate-adaptive randomization**: Byambadalai et al. (2025) [#car2025]_
3232
* **Multi-task learning**: Hirata et al. (2025) [#multitask2025]_
33-
* **Imperfect compliance**: Byambadalai et al. (2024) [#compliance2024]_
33+
* **Imperfect compliance**: Byambadalai et al. (2024) [#compliance2025]_
3434

3535
.. [#simple2024] Byambadalai, U., Oka, T., & Yasui, S. (2024). Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction. In Proceedings of the 41st International Conference on Machine Learning (ICML'24). `arXiv:2407.16037 <https://arxiv.org/abs/2407.16037>`_.
3636
3737
.. [#car2025] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2025). On Efficient Estimation of Distributional Treatment Effects under Covariate-Adaptive Randomization. In Proceedings of the 42nd International Conference on Machine Learning (ICML'25). `arXiv:2506.05945 <https://arxiv.org/abs/2506.05945>`_.
3838
3939
.. [#multitask2025] Hirata, T., Byambadalai, U., Oka, T., Yasui, S., & Uto, S. (2025). Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks. arXiv preprint `arXiv:2507.07738 <https://arxiv.org/abs/2507.07738>`_.
4040
41-
.. [#compliance2024] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2024). Beyond the Average: Distributional Causal Inference under Imperfect Compliance. arXiv preprint `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
41+
.. [#compliance2025] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2025). Beyond the Average: Distributional Causal Inference under Imperfect Compliance. arXiv preprint `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
4242
4343
.. toctree::
4444
:maxdepth: 1

api/local.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,7 @@ <h1>Local Distribution Estimators<a class="headerlink" href="#local-distribution
3737
<p>This page documents local distribution treatment effect estimators that compute treatment effects weighted by treatment propensity within each stratum. These estimators are particularly useful for handling treatment assignment heterogeneity across strata and scenarios with imperfect compliance.</p>
3838
<p>Local distribution treatment effects (LDTE) and local probability treatment effects (LPTE) provide methods for causal inference that account for treatment assignment vs. treatment receipt differences. For theoretical foundations on imperfect compliance scenarios, see:</p>
3939
<ul class="simple">
40-
<li><p>Byambadalai, U., Hirata, T., Oka, T., &amp; Yasui, S. (2024). <em>Beyond the Average: Distributional Causal Inference under Imperfect Compliance</em>. <a class="reference external" href="https://arxiv.org/abs/2509.15594">arXiv:2509.15594</a>.</p></li>
40+
<li><p>Byambadalai, U., Hirata, T., Oka, T., &amp; Yasui, S. (2025). <em>Beyond the Average: Distributional Causal Inference under Imperfect Compliance</em>. <a class="reference external" href="https://arxiv.org/abs/2509.15594">arXiv:2509.15594</a>.</p></li>
4141
</ul>
4242
<section id="simplelocaldistributionestimator">
4343
<h2>SimpleLocalDistributionEstimator<a class="headerlink" href="#simplelocaldistributionestimator" title="Link to this heading"></a></h2>

api_reference.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@ <h2>Overview<a class="headerlink" href="#overview" title="Link to this heading">
4545
<li><p><strong>Utility Functions</strong>: Helper functions for confidence intervals and statistical computations</p></li>
4646
<li><p><strong>Plotting Utilities</strong>: Visualization tools for treatment effects and distributions</p></li>
4747
</ul>
48-
<p>For theoretical foundations, see Byambadalai et al. (2024) <a class="footnote-reference brackets" href="#simple2024" id="id1" role="doc-noteref"><span class="fn-bracket">[</span>1<span class="fn-bracket">]</span></a> for simple randomization, Byambadalai et al. (2025) <a class="footnote-reference brackets" href="#car2025" id="id2" role="doc-noteref"><span class="fn-bracket">[</span>2<span class="fn-bracket">]</span></a> for covariate-adaptive randomization, and Byambadalai et al. (2024) <a class="footnote-reference brackets" href="#compliance2024" id="id3" role="doc-noteref"><span class="fn-bracket">[</span>4<span class="fn-bracket">]</span></a> for imperfect compliance scenarios.</p>
48+
<p>For theoretical foundations, see Byambadalai et al. (2024) <a class="footnote-reference brackets" href="#simple2024" id="id1" role="doc-noteref"><span class="fn-bracket">[</span>1<span class="fn-bracket">]</span></a> for simple randomization, Byambadalai et al. (2025) <a class="footnote-reference brackets" href="#car2025" id="id2" role="doc-noteref"><span class="fn-bracket">[</span>2<span class="fn-bracket">]</span></a> for covariate-adaptive randomization, and Byambadalai et al. (2024) <a class="footnote-reference brackets" href="#compliance2025" id="id3" role="doc-noteref"><span class="fn-bracket">[</span>4<span class="fn-bracket">]</span></a> for imperfect compliance scenarios.</p>
4949
<p>For multi-task learning approaches that train models for all locations simultaneously (using <code class="docutils literal notranslate"><span class="pre">is_multi_task=True</span></code>), see the neural network framework in <a class="footnote-reference brackets" href="#multitask2025" id="id4" role="doc-noteref"><span class="fn-bracket">[</span>3<span class="fn-bracket">]</span></a>.</p>
5050
<aside class="footnote-list brackets">
5151
<aside class="footnote brackets" id="simple2024" role="doc-footnote">
@@ -60,9 +60,9 @@ <h2>Overview<a class="headerlink" href="#overview" title="Link to this heading">
6060
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id4">3</a><span class="fn-bracket">]</span></span>
6161
<p>Hirata, T., Byambadalai, U., Oka, T., Yasui, S., &amp; Uto, S. (2025). Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks. arXiv preprint <a class="reference external" href="https://arxiv.org/abs/2507.07738">arXiv:2507.07738</a>.</p>
6262
</aside>
63-
<aside class="footnote brackets" id="compliance2024" role="doc-footnote">
63+
<aside class="footnote brackets" id="compliance2025" role="doc-footnote">
6464
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id3">4</a><span class="fn-bracket">]</span></span>
65-
<p>Byambadalai, U., Hirata, T., Oka, T., &amp; Yasui, S. (2024). Beyond the Average: Distributional Causal Inference under Imperfect Compliance. arXiv preprint <a class="reference external" href="https://arxiv.org/abs/2509.15594">arXiv:2509.15594</a>.</p>
65+
<p>Byambadalai, U., Hirata, T., Oka, T., &amp; Yasui, S. (2025). Beyond the Average: Distributional Causal Inference under Imperfect Compliance. arXiv preprint <a class="reference external" href="https://arxiv.org/abs/2509.15594">arXiv:2509.15594</a>.</p>
6666
</aside>
6767
</aside>
6868
</section>

index.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -56,7 +56,7 @@ <h2>Theoretical Foundations<a class="headerlink" href="#theoretical-foundations"
5656
<li><p><strong>Simple randomization</strong>: Byambadalai et al. (2024) <a class="footnote-reference brackets" href="#simple2024" id="id1" role="doc-noteref"><span class="fn-bracket">[</span>1<span class="fn-bracket">]</span></a></p></li>
5757
<li><p><strong>Covariate-adaptive randomization</strong>: Byambadalai et al. (2025) <a class="footnote-reference brackets" href="#car2025" id="id2" role="doc-noteref"><span class="fn-bracket">[</span>2<span class="fn-bracket">]</span></a></p></li>
5858
<li><p><strong>Multi-task learning</strong>: Hirata et al. (2025) <a class="footnote-reference brackets" href="#multitask2025" id="id3" role="doc-noteref"><span class="fn-bracket">[</span>3<span class="fn-bracket">]</span></a></p></li>
59-
<li><p><strong>Imperfect compliance</strong>: Byambadalai et al. (2024) <a class="footnote-reference brackets" href="#compliance2024" id="id4" role="doc-noteref"><span class="fn-bracket">[</span>4<span class="fn-bracket">]</span></a></p></li>
59+
<li><p><strong>Imperfect compliance</strong>: Byambadalai et al. (2024) <a class="footnote-reference brackets" href="#compliance2025" id="id4" role="doc-noteref"><span class="fn-bracket">[</span>4<span class="fn-bracket">]</span></a></p></li>
6060
</ul>
6161
<aside class="footnote-list brackets">
6262
<aside class="footnote brackets" id="simple2024" role="doc-footnote">
@@ -71,9 +71,9 @@ <h2>Theoretical Foundations<a class="headerlink" href="#theoretical-foundations"
7171
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id3">3</a><span class="fn-bracket">]</span></span>
7272
<p>Hirata, T., Byambadalai, U., Oka, T., Yasui, S., &amp; Uto, S. (2025). Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks. arXiv preprint <a class="reference external" href="https://arxiv.org/abs/2507.07738">arXiv:2507.07738</a>.</p>
7373
</aside>
74-
<aside class="footnote brackets" id="compliance2024" role="doc-footnote">
74+
<aside class="footnote brackets" id="compliance2025" role="doc-footnote">
7575
<span class="label"><span class="fn-bracket">[</span><a role="doc-backlink" href="#id4">4</a><span class="fn-bracket">]</span></span>
76-
<p>Byambadalai, U., Hirata, T., Oka, T., &amp; Yasui, S. (2024). Beyond the Average: Distributional Causal Inference under Imperfect Compliance. arXiv preprint <a class="reference external" href="https://arxiv.org/abs/2509.15594">arXiv:2509.15594</a>.</p>
76+
<p>Byambadalai, U., Hirata, T., Oka, T., &amp; Yasui, S. (2025). Beyond the Average: Distributional Causal Inference under Imperfect Compliance. arXiv preprint <a class="reference external" href="https://arxiv.org/abs/2509.15594">arXiv:2509.15594</a>.</p>
7777
</aside>
7878
</aside>
7979
<div class="toctree-wrapper compound">

searchindex.js

Lines changed: 1 addition & 1 deletion
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

0 commit comments

Comments
 (0)