You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: _sources/api/local.rst.txt
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -5,7 +5,7 @@ This page documents local distribution treatment effect estimators that compute
5
5
6
6
Local distribution treatment effects (LDTE) and local probability treatment effects (LPTE) provide methods for causal inference that account for treatment assignment vs. treatment receipt differences. For theoretical foundations on imperfect compliance scenarios, see:
7
7
8
-
* Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2024). *Beyond the Average: Distributional Causal Inference under Imperfect Compliance*. `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
8
+
* Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2025). *Beyond the Average: Distributional Causal Inference under Imperfect Compliance*. `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
Copy file name to clipboardExpand all lines: _sources/api_reference.rst.txt
+2-2Lines changed: 2 additions & 2 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -14,7 +14,7 @@ The dte_adj package provides several types of estimators for computing distribut
14
14
* **Utility Functions**: Helper functions for confidence intervals and statistical computations
15
15
* **Plotting Utilities**: Visualization tools for treatment effects and distributions
16
16
17
-
For theoretical foundations, see Byambadalai et al. (2024) [#simple2024]_ for simple randomization, Byambadalai et al. (2025) [#car2025]_ for covariate-adaptive randomization, and Byambadalai et al. (2024) [#compliance2024]_ for imperfect compliance scenarios.
17
+
For theoretical foundations, see Byambadalai et al. (2024) [#simple2024]_ for simple randomization, Byambadalai et al. (2025) [#car2025]_ for covariate-adaptive randomization, and Byambadalai et al. (2024) [#compliance2025]_ for imperfect compliance scenarios.
18
18
19
19
For multi-task learning approaches that train models for all locations simultaneously (using ``is_multi_task=True``), see the neural network framework in [#multitask2025]_.
20
20
@@ -24,7 +24,7 @@ For multi-task learning approaches that train models for all locations simultane
24
24
25
25
.. [#multitask2025] Hirata, T., Byambadalai, U., Oka, T., Yasui, S., & Uto, S. (2025). Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks. arXiv preprint `arXiv:2507.07738 <https://arxiv.org/abs/2507.07738>`_.
26
26
27
-
.. [#compliance2024] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2024). Beyond the Average: Distributional Causal Inference under Imperfect Compliance. arXiv preprint `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
27
+
.. [#compliance2025] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2025). Beyond the Average: Distributional Causal Inference under Imperfect Compliance. arXiv preprint `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
Copy file name to clipboardExpand all lines: _sources/index.rst.txt
+2-2Lines changed: 2 additions & 2 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -30,15 +30,15 @@ For theoretical foundations, see:
30
30
* **Simple randomization**: Byambadalai et al. (2024) [#simple2024]_
31
31
* **Covariate-adaptive randomization**: Byambadalai et al. (2025) [#car2025]_
32
32
* **Multi-task learning**: Hirata et al. (2025) [#multitask2025]_
33
-
* **Imperfect compliance**: Byambadalai et al. (2024) [#compliance2024]_
33
+
* **Imperfect compliance**: Byambadalai et al. (2024) [#compliance2025]_
34
34
35
35
.. [#simple2024] Byambadalai, U., Oka, T., & Yasui, S. (2024). Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction. In Proceedings of the 41st International Conference on Machine Learning (ICML'24). `arXiv:2407.16037 <https://arxiv.org/abs/2407.16037>`_.
36
36
37
37
.. [#car2025] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2025). On Efficient Estimation of Distributional Treatment Effects under Covariate-Adaptive Randomization. In Proceedings of the 42nd International Conference on Machine Learning (ICML'25). `arXiv:2506.05945 <https://arxiv.org/abs/2506.05945>`_.
38
38
39
39
.. [#multitask2025] Hirata, T., Byambadalai, U., Oka, T., Yasui, S., & Uto, S. (2025). Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks. arXiv preprint `arXiv:2507.07738 <https://arxiv.org/abs/2507.07738>`_.
40
40
41
-
.. [#compliance2024] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2024). Beyond the Average: Distributional Causal Inference under Imperfect Compliance. arXiv preprint `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
41
+
.. [#compliance2025] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2025). Beyond the Average: Distributional Causal Inference under Imperfect Compliance. arXiv preprint `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
Copy file name to clipboardExpand all lines: api/local.html
+1-1Lines changed: 1 addition & 1 deletion
Original file line number
Diff line number
Diff line change
@@ -37,7 +37,7 @@ <h1>Local Distribution Estimators<a class="headerlink" href="#local-distribution
37
37
<p>This page documents local distribution treatment effect estimators that compute treatment effects weighted by treatment propensity within each stratum. These estimators are particularly useful for handling treatment assignment heterogeneity across strata and scenarios with imperfect compliance.</p>
38
38
<p>Local distribution treatment effects (LDTE) and local probability treatment effects (LPTE) provide methods for causal inference that account for treatment assignment vs. treatment receipt differences. For theoretical foundations on imperfect compliance scenarios, see:</p>
39
39
<ulclass="simple">
40
-
<li><p>Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2024). <em>Beyond the Average: Distributional Causal Inference under Imperfect Compliance</em>. <aclass="reference external" href="https://arxiv.org/abs/2509.15594">arXiv:2509.15594</a>.</p></li>
40
+
<li><p>Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2025). <em>Beyond the Average: Distributional Causal Inference under Imperfect Compliance</em>. <aclass="reference external" href="https://arxiv.org/abs/2509.15594">arXiv:2509.15594</a>.</p></li>
41
41
</ul>
42
42
<sectionid="simplelocaldistributionestimator">
43
43
<h2>SimpleLocalDistributionEstimator<aclass="headerlink" href="#simplelocaldistributionestimator" title="Link to this heading">¶</a></h2>
Copy file name to clipboardExpand all lines: api_reference.html
+3-3Lines changed: 3 additions & 3 deletions
Original file line number
Diff line number
Diff line change
@@ -45,7 +45,7 @@ <h2>Overview<a class="headerlink" href="#overview" title="Link to this heading">
45
45
<li><p><strong>Utility Functions</strong>: Helper functions for confidence intervals and statistical computations</p></li>
46
46
<li><p><strong>Plotting Utilities</strong>: Visualization tools for treatment effects and distributions</p></li>
47
47
</ul>
48
-
<p>For theoretical foundations, see Byambadalai et al. (2024) <aclass="footnote-reference brackets" href="#simple2024" id="id1" role="doc-noteref"><spanclass="fn-bracket">[</span>1<spanclass="fn-bracket">]</span></a> for simple randomization, Byambadalai et al. (2025) <aclass="footnote-reference brackets" href="#car2025" id="id2" role="doc-noteref"><spanclass="fn-bracket">[</span>2<spanclass="fn-bracket">]</span></a> for covariate-adaptive randomization, and Byambadalai et al. (2024) <aclass="footnote-reference brackets" href="#compliance2024" id="id3" role="doc-noteref"><spanclass="fn-bracket">[</span>4<spanclass="fn-bracket">]</span></a> for imperfect compliance scenarios.</p>
48
+
<p>For theoretical foundations, see Byambadalai et al. (2024) <aclass="footnote-reference brackets" href="#simple2024" id="id1" role="doc-noteref"><spanclass="fn-bracket">[</span>1<spanclass="fn-bracket">]</span></a> for simple randomization, Byambadalai et al. (2025) <aclass="footnote-reference brackets" href="#car2025" id="id2" role="doc-noteref"><spanclass="fn-bracket">[</span>2<spanclass="fn-bracket">]</span></a> for covariate-adaptive randomization, and Byambadalai et al. (2024) <aclass="footnote-reference brackets" href="#compliance2025" id="id3" role="doc-noteref"><spanclass="fn-bracket">[</span>4<spanclass="fn-bracket">]</span></a> for imperfect compliance scenarios.</p>
49
49
<p>For multi-task learning approaches that train models for all locations simultaneously (using <codeclass="docutils literal notranslate"><spanclass="pre">is_multi_task=True</span></code>), see the neural network framework in <aclass="footnote-reference brackets" href="#multitask2025" id="id4" role="doc-noteref"><spanclass="fn-bracket">[</span>3<spanclass="fn-bracket">]</span></a>.</p>
0 commit comments