Skip to content

Commit 40e41a8

Browse files
TomeHirataCopilot
andauthored
Add NeurIPS paper to the reference list (#79)
* Add NeurIPS paper to the reference list * Update docs/source/api_reference.rst Co-authored-by: Copilot <[email protected]> --------- Co-authored-by: Copilot <[email protected]>
1 parent d283bf7 commit 40e41a8

File tree

5 files changed

+55
-18
lines changed

5 files changed

+55
-18
lines changed

CITATION.cff

Lines changed: 26 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -18,8 +18,8 @@ authors:
1818
- family-names: Yasui
1919
given-names: Shota
2020
preferred-citation:
21-
type: article
22-
title: "Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction"
21+
type: conference-paper
22+
title: "Estimating distributional treatment effects in randomized experiments: machine learning for variance reduction"
2323
authors:
2424
- family-names: Byambadalai
2525
given-names: Undral
@@ -28,11 +28,14 @@ preferred-citation:
2828
- family-names: Yasui
2929
given-names: Shota
3030
year: 2024
31+
conference:
32+
name: "Proceedings of the 41st International Conference on Machine Learning"
33+
publisher:
34+
name: "JMLR.org"
3135
url: "https://arxiv.org/abs/2407.16037"
32-
repository: "arXiv:2407.16037"
3336
references:
34-
- type: article
35-
title: "Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction"
37+
- type: conference-paper
38+
title: "Estimating distributional treatment effects in randomized experiments: machine learning for variance reduction"
3639
authors:
3740
- family-names: Byambadalai
3841
given-names: Undral
@@ -41,8 +44,11 @@ references:
4144
- family-names: Yasui
4245
given-names: Shota
4346
year: 2024
47+
conference:
48+
name: "Proceedings of the 41st International Conference on Machine Learning"
49+
publisher:
50+
name: "JMLR.org"
4451
url: "https://arxiv.org/abs/2407.16037"
45-
repository: "arXiv:2407.16037"
4652
- type: article
4753
title: "On Efficient Estimation of Distributional Treatment Effects under Covariate-Adaptive Randomization"
4854
authors:
@@ -73,3 +79,17 @@ references:
7379
year: 2025
7480
url: "https://arxiv.org/abs/2507.07738"
7581
repository: "arXiv:2507.07738"
82+
- type: article
83+
title: "Beyond the Average: Distributional Causal Inference under Imperfect Compliance"
84+
authors:
85+
- family-names: Byambadalai
86+
given-names: Undral
87+
- family-names: Hirata
88+
given-names: Tomu
89+
- family-names: Oka
90+
given-names: Tatsushi
91+
- family-names: Yasui
92+
given-names: Shota
93+
year: 2024
94+
url: "https://arxiv.org/abs/2509.15594"
95+
repository: "arXiv:2509.15594"

README.md

Lines changed: 14 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -25,24 +25,32 @@ Examples of how to use this package are available in [this Get-started Guide](ht
2525
This package implements methods from the following research papers:
2626

2727
### Simple Randomization
28-
- **Byambadalai, U., Oka, T., & Yasui, S.** (2024). *Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction*. [arXiv:2407.16037](https://arxiv.org/abs/2407.16037)
28+
- **Byambadalai, U., Oka, T., & Yasui, S.** (2024). *Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction*. In Proceedings of the 41st International Conference on Machine Learning (ICML'24). [arXiv:2407.16037](https://arxiv.org/abs/2407.16037)
2929
3030
### Covariate-Adaptive Randomization
31-
- **Byambadalai, U., Hirata, T., Oka, T., & Yasui, S.** (2025). *On Efficient Estimation of Distributional Treatment Effects under Covariate-Adaptive Randomization*. [arXiv:2506.05945](https://arxiv.org/abs/2506.05945)
31+
- **Byambadalai, U., Hirata, T., Oka, T., & Yasui, S.** (2025). *On Efficient Estimation of Distributional Treatment Effects under Covariate-Adaptive Randomization*. In Proceedings of the 42nd International Conference on Machine Learning (ICML'25). [arXiv:2506.05945](https://arxiv.org/abs/2506.05945)
3232

3333
### Multi-Task Learning
3434
- **Hirata, T., Byambadalai, U., Oka, T., Yasui, S., & Uto, S.** (2025). *Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks*. [arXiv:2507.07738](https://arxiv.org/abs/2507.07738)
3535

36+
### Imperfect Compliance
37+
- **Byambadalai, U., Hirata, T., Oka, T., & Yasui, S.** (2024). *Beyond the Average: Distributional Causal Inference under Imperfect Compliance*. [arXiv:2509.15594](https://arxiv.org/abs/2509.15594)
38+
3639
## Citation
3740

3841
If you use this software in your research, please cite our work:
3942

4043
```bibtex
41-
@article{byambadalai2024estimating,
42-
title={Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction},
44+
@inproceedings{byambadalai2024estimating,
45+
title={Estimating distributional treatment effects in randomized experiments: machine learning for variance reduction},
4346
author={Byambadalai, Undral and Oka, Tatsushi and Yasui, Shota},
44-
journal={arXiv preprint arXiv:2407.16037},
45-
year={2024}
47+
booktitle={Proceedings of the 41st International Conference on Machine Learning},
48+
articleno={199},
49+
numpages={32},
50+
year={2024},
51+
publisher={JMLR.org},
52+
series={ICML'24},
53+
location={Vienna, Austria}
4654
}
4755
```
4856

docs/source/api/local.rst

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,11 @@
11
Local Distribution Estimators
22
==============================
33

4-
This page documents local distribution treatment effect estimators that compute treatment effects weighted by treatment propensity within each stratum. These estimators are particularly useful for handling treatment assignment heterogeneity across strata.
4+
This page documents local distribution treatment effect estimators that compute treatment effects weighted by treatment propensity within each stratum. These estimators are particularly useful for handling treatment assignment heterogeneity across strata and scenarios with imperfect compliance.
5+
6+
Local distribution treatment effects (LDTE) and local probability treatment effects (LPTE) provide methods for causal inference that account for treatment assignment vs. treatment receipt differences. For theoretical foundations on imperfect compliance scenarios, see:
7+
8+
* Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2024). *Beyond the Average: Distributional Causal Inference under Imperfect Compliance*. `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
59

610
SimpleLocalDistributionEstimator
711
--------------------------------

docs/source/api_reference.rst

Lines changed: 5 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -14,16 +14,18 @@ The dte_adj package provides several types of estimators for computing distribut
1414
* **Utility Functions**: Helper functions for confidence intervals and statistical computations
1515
* **Plotting Utilities**: Visualization tools for treatment effects and distributions
1616

17-
For theoretical foundations, see Byambadalai et al. (2024) [#simple2024]_ for simple randomization and Byambadalai et al. (2025) [#car2025]_ for covariate-adaptive randomization.
17+
For theoretical foundations, see Byambadalai et al. (2024) [#simple2024]_ for simple randomization, Byambadalai et al. (2025) [#car2025]_ for covariate-adaptive randomization, and Byambadalai et al. (2024) [#compliance2024]_ for imperfect compliance scenarios.
1818

1919
For multi-task learning approaches that train models for all locations simultaneously (using ``is_multi_task=True``), see the neural network framework in [#multitask2025]_.
2020

21-
.. [#simple2024] Byambadalai, U., Oka, T., & Yasui, S. (2024). Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction. arXiv preprint `arXiv:2407.16037 <https://arxiv.org/abs/2407.16037>`_.
21+
.. [#simple2024] Byambadalai, U., Oka, T., & Yasui, S. (2024). Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction. In Proceedings of the 41st International Conference on Machine Learning (ICML'24). `arXiv:2407.16037 <https://arxiv.org/abs/2407.16037>`_.
2222
23-
.. [#car2025] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2025). On Efficient Estimation of Distributional Treatment Effects under Covariate-Adaptive Randomization. arXiv preprint `arXiv:2506.05945 <https://arxiv.org/abs/2506.05945>`_.
23+
.. [#car2025] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2025). On Efficient Estimation of Distributional Treatment Effects under Covariate-Adaptive Randomization. In Proceedings of the 42nd International Conference on Machine Learning (ICML'25). `arXiv:2506.05945 <https://arxiv.org/abs/2506.05945>`_.
2424
2525
.. [#multitask2025] Hirata, T., Byambadalai, U., Oka, T., Yasui, S., & Uto, S. (2025). Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks. arXiv preprint `arXiv:2507.07738 <https://arxiv.org/abs/2507.07738>`_.
2626
27+
.. [#compliance2024] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2024). Beyond the Average: Distributional Causal Inference under Imperfect Compliance. arXiv preprint `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
28+
2729
Detailed Documentation
2830
----------------------
2931

docs/source/index.rst

Lines changed: 5 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -30,13 +30,16 @@ For theoretical foundations, see:
3030
* **Simple randomization**: Byambadalai et al. (2024) [#simple2024]_
3131
* **Covariate-adaptive randomization**: Byambadalai et al. (2025) [#car2025]_
3232
* **Multi-task learning**: Hirata et al. (2025) [#multitask2025]_
33+
* **Imperfect compliance**: Byambadalai et al. (2024) [#compliance2024]_
3334

34-
.. [#simple2024] Byambadalai, U., Oka, T., & Yasui, S. (2024). Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction. arXiv preprint `arXiv:2407.16037 <https://arxiv.org/abs/2407.16037>`_.
35+
.. [#simple2024] Byambadalai, U., Oka, T., & Yasui, S. (2024). Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction. In Proceedings of the 41st International Conference on Machine Learning (ICML'24). `arXiv:2407.16037 <https://arxiv.org/abs/2407.16037>`_.
3536
36-
.. [#car2025] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2025). On Efficient Estimation of Distributional Treatment Effects under Covariate-Adaptive Randomization. arXiv preprint `arXiv:2506.05945 <https://arxiv.org/abs/2506.05945>`_.
37+
.. [#car2025] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2025). On Efficient Estimation of Distributional Treatment Effects under Covariate-Adaptive Randomization. In Proceedings of the 42nd International Conference on Machine Learning (ICML'25). `arXiv:2506.05945 <https://arxiv.org/abs/2506.05945>`_.
3738
3839
.. [#multitask2025] Hirata, T., Byambadalai, U., Oka, T., Yasui, S., & Uto, S. (2025). Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks. arXiv preprint `arXiv:2507.07738 <https://arxiv.org/abs/2507.07738>`_.
3940
41+
.. [#compliance2024] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2024). Beyond the Average: Distributional Causal Inference under Imperfect Compliance. arXiv preprint `arXiv:2509.15594 <https://arxiv.org/abs/2509.15594>`_.
42+
4043
.. toctree::
4144
:maxdepth: 1
4245
:caption: Contents:

0 commit comments

Comments
 (0)