Skip to content

Commit 5dce874

Browse files
authored
introduce pre-commit (#55)
1 parent 0370155 commit 5dce874

File tree

4 files changed

+1458
-4
lines changed

4 files changed

+1458
-4
lines changed

.pre-commit-config.yaml

Lines changed: 22 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,22 @@
1+
repos:
2+
- repo: https://github.com/astral-sh/ruff-pre-commit
3+
rev: v0.12.7
4+
hooks:
5+
- id: ruff
6+
name: ruff (linter)
7+
args: [--fix]
8+
- id: ruff-format
9+
name: ruff (formatter)
10+
- repo: https://github.com/pre-commit/pre-commit-hooks
11+
rev: v5.0.0
12+
hooks:
13+
- id: trailing-whitespace
14+
- id: end-of-file-fixer
15+
- id: check-merge-conflict
16+
- id: check-yaml
17+
- id: check-toml
18+
- repo: https://github.com/crate-ci/typos
19+
rev: v1.28.1
20+
hooks:
21+
- id: typos
22+
args: [--write-changes]

docs/source/api_reference.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -16,13 +16,13 @@ The dte_adj package provides several types of estimators for computing distribut
1616

1717
For theoretical foundations, see Byambadalai et al. (2024) [#simple2024]_ for simple randomization and Byambadalai et al. (2025) [#car2025]_ for covariate-adaptive randomization.
1818

19-
For multi-task learning approaches that train models for all locations simultaneously (using ``is_multi_task=True``), see the neural network framework in [#multitask2024]_.
19+
For multi-task learning approaches that train models for all locations simultaneously (using ``is_multi_task=True``), see the neural network framework in [#multitask2025]_.
2020

2121
.. [#simple2024] Byambadalai, U., Oka, T., & Yasui, S. (2024). Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction. arXiv preprint `arXiv:2407.16037 <https://arxiv.org/abs/2407.16037>`_.
2222
2323
.. [#car2025] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2025). On Efficient Estimation of Distributional Treatment Effects under Covariate-Adaptive Randomization. arXiv preprint `arXiv:2506.05945 <https://arxiv.org/abs/2506.05945>`_.
2424
25-
.. [#multitask2024] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2024). Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks. arXiv preprint `arXiv:2507.07738 <https://arxiv.org/abs/2507.07738>`_.
25+
.. [#multitask2025] Hirata, T., Byambadalai, U., Oka, T., Yasui, S., & Uto, S. (2025). Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks. arXiv preprint `arXiv:2507.07738 <https://arxiv.org/abs/2507.07738>`_.
2626
2727
Detailed Documentation
2828
----------------------

docs/source/index.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -29,13 +29,13 @@ For theoretical foundations, see:
2929

3030
* **Simple randomization**: Byambadalai et al. (2024) [#simple2024]_
3131
* **Covariate-adaptive randomization**: Byambadalai et al. (2025) [#car2025]_
32-
* **Multi-task learning**: Byambadalai et al. (2024) [#multitask2024]_
32+
* **Multi-task learning**: Hirata et al. (2025) [#multitask2025]_
3333

3434
.. [#simple2024] Byambadalai, U., Oka, T., & Yasui, S. (2024). Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction. arXiv preprint `arXiv:2407.16037 <https://arxiv.org/abs/2407.16037>`_.
3535
3636
.. [#car2025] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2025). On Efficient Estimation of Distributional Treatment Effects under Covariate-Adaptive Randomization. arXiv preprint `arXiv:2506.05945 <https://arxiv.org/abs/2506.05945>`_.
3737
38-
.. [#multitask2024] Byambadalai, U., Hirata, T., Oka, T., & Yasui, S. (2024). Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks. arXiv preprint `arXiv:2507.07738 <https://arxiv.org/abs/2507.07738>`_.
38+
.. [#multitask2025] Hirata, T., Byambadalai, U., Oka, T., Yasui, S., & Uto, S. (2025). Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks. arXiv preprint `arXiv:2507.07738 <https://arxiv.org/abs/2507.07738>`_.
3939
4040
.. toctree::
4141
:maxdepth: 1

0 commit comments

Comments
 (0)