@@ -4450,6 +4450,311 @@ def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
44504450 super ().unfuse_lora (components = components , ** kwargs )
44514451
44524452
4453+ class CogView4LoraLoaderMixin (LoraBaseMixin ):
4454+ r"""
4455+ Load LoRA layers into [`WanTransformer3DModel`]. Specific to [`CogView4Pipeline`].
4456+ """
4457+
4458+ _lora_loadable_modules = ["transformer" ]
4459+ transformer_name = TRANSFORMER_NAME
4460+
4461+ @classmethod
4462+ @validate_hf_hub_args
4463+ # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.lora_state_dict
4464+ def lora_state_dict (
4465+ cls ,
4466+ pretrained_model_name_or_path_or_dict : Union [str , Dict [str , torch .Tensor ]],
4467+ ** kwargs ,
4468+ ):
4469+ r"""
4470+ Return state dict for lora weights and the network alphas.
4471+
4472+ <Tip warning={true}>
4473+
4474+ We support loading A1111 formatted LoRA checkpoints in a limited capacity.
4475+
4476+ This function is experimental and might change in the future.
4477+
4478+ </Tip>
4479+
4480+ Parameters:
4481+ pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
4482+ Can be either:
4483+
4484+ - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
4485+ the Hub.
4486+ - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
4487+ with [`ModelMixin.save_pretrained`].
4488+ - A [torch state
4489+ dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
4490+
4491+ cache_dir (`Union[str, os.PathLike]`, *optional*):
4492+ Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
4493+ is not used.
4494+ force_download (`bool`, *optional*, defaults to `False`):
4495+ Whether or not to force the (re-)download of the model weights and configuration files, overriding the
4496+ cached versions if they exist.
4497+
4498+ proxies (`Dict[str, str]`, *optional*):
4499+ A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
4500+ 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
4501+ local_files_only (`bool`, *optional*, defaults to `False`):
4502+ Whether to only load local model weights and configuration files or not. If set to `True`, the model
4503+ won't be downloaded from the Hub.
4504+ token (`str` or *bool*, *optional*):
4505+ The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
4506+ `diffusers-cli login` (stored in `~/.huggingface`) is used.
4507+ revision (`str`, *optional*, defaults to `"main"`):
4508+ The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
4509+ allowed by Git.
4510+ subfolder (`str`, *optional*, defaults to `""`):
4511+ The subfolder location of a model file within a larger model repository on the Hub or locally.
4512+
4513+ """
4514+ # Load the main state dict first which has the LoRA layers for either of
4515+ # transformer and text encoder or both.
4516+ cache_dir = kwargs .pop ("cache_dir" , None )
4517+ force_download = kwargs .pop ("force_download" , False )
4518+ proxies = kwargs .pop ("proxies" , None )
4519+ local_files_only = kwargs .pop ("local_files_only" , None )
4520+ token = kwargs .pop ("token" , None )
4521+ revision = kwargs .pop ("revision" , None )
4522+ subfolder = kwargs .pop ("subfolder" , None )
4523+ weight_name = kwargs .pop ("weight_name" , None )
4524+ use_safetensors = kwargs .pop ("use_safetensors" , None )
4525+
4526+ allow_pickle = False
4527+ if use_safetensors is None :
4528+ use_safetensors = True
4529+ allow_pickle = True
4530+
4531+ user_agent = {
4532+ "file_type" : "attn_procs_weights" ,
4533+ "framework" : "pytorch" ,
4534+ }
4535+
4536+ state_dict = _fetch_state_dict (
4537+ pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict ,
4538+ weight_name = weight_name ,
4539+ use_safetensors = use_safetensors ,
4540+ local_files_only = local_files_only ,
4541+ cache_dir = cache_dir ,
4542+ force_download = force_download ,
4543+ proxies = proxies ,
4544+ token = token ,
4545+ revision = revision ,
4546+ subfolder = subfolder ,
4547+ user_agent = user_agent ,
4548+ allow_pickle = allow_pickle ,
4549+ )
4550+
4551+ is_dora_scale_present = any ("dora_scale" in k for k in state_dict )
4552+ if is_dora_scale_present :
4553+ warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
4554+ logger .warning (warn_msg )
4555+ state_dict = {k : v for k , v in state_dict .items () if "dora_scale" not in k }
4556+
4557+ return state_dict
4558+
4559+ # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
4560+ def load_lora_weights (
4561+ self , pretrained_model_name_or_path_or_dict : Union [str , Dict [str , torch .Tensor ]], adapter_name = None , ** kwargs
4562+ ):
4563+ """
4564+ Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
4565+ `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
4566+ [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
4567+ See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
4568+ dict is loaded into `self.transformer`.
4569+
4570+ Parameters:
4571+ pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
4572+ See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
4573+ adapter_name (`str`, *optional*):
4574+ Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
4575+ `default_{i}` where i is the total number of adapters being loaded.
4576+ low_cpu_mem_usage (`bool`, *optional*):
4577+ Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
4578+ weights.
4579+ kwargs (`dict`, *optional*):
4580+ See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
4581+ """
4582+ if not USE_PEFT_BACKEND :
4583+ raise ValueError ("PEFT backend is required for this method." )
4584+
4585+ low_cpu_mem_usage = kwargs .pop ("low_cpu_mem_usage" , _LOW_CPU_MEM_USAGE_DEFAULT_LORA )
4586+ if low_cpu_mem_usage and is_peft_version ("<" , "0.13.0" ):
4587+ raise ValueError (
4588+ "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
4589+ )
4590+
4591+ # if a dict is passed, copy it instead of modifying it inplace
4592+ if isinstance (pretrained_model_name_or_path_or_dict , dict ):
4593+ pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict .copy ()
4594+
4595+ # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
4596+ state_dict = self .lora_state_dict (pretrained_model_name_or_path_or_dict , ** kwargs )
4597+
4598+ is_correct_format = all ("lora" in key for key in state_dict .keys ())
4599+ if not is_correct_format :
4600+ raise ValueError ("Invalid LoRA checkpoint." )
4601+
4602+ self .load_lora_into_transformer (
4603+ state_dict ,
4604+ transformer = getattr (self , self .transformer_name ) if not hasattr (self , "transformer" ) else self .transformer ,
4605+ adapter_name = adapter_name ,
4606+ _pipeline = self ,
4607+ low_cpu_mem_usage = low_cpu_mem_usage ,
4608+ )
4609+
4610+ @classmethod
4611+ # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->CogView4Transformer2DModel
4612+ def load_lora_into_transformer (
4613+ cls , state_dict , transformer , adapter_name = None , _pipeline = None , low_cpu_mem_usage = False
4614+ ):
4615+ """
4616+ This will load the LoRA layers specified in `state_dict` into `transformer`.
4617+
4618+ Parameters:
4619+ state_dict (`dict`):
4620+ A standard state dict containing the lora layer parameters. The keys can either be indexed directly
4621+ into the unet or prefixed with an additional `unet` which can be used to distinguish between text
4622+ encoder lora layers.
4623+ transformer (`CogView4Transformer2DModel`):
4624+ The Transformer model to load the LoRA layers into.
4625+ adapter_name (`str`, *optional*):
4626+ Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
4627+ `default_{i}` where i is the total number of adapters being loaded.
4628+ low_cpu_mem_usage (`bool`, *optional*):
4629+ Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
4630+ weights.
4631+ """
4632+ if low_cpu_mem_usage and is_peft_version ("<" , "0.13.0" ):
4633+ raise ValueError (
4634+ "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
4635+ )
4636+
4637+ # Load the layers corresponding to transformer.
4638+ logger .info (f"Loading { cls .transformer_name } ." )
4639+ transformer .load_lora_adapter (
4640+ state_dict ,
4641+ network_alphas = None ,
4642+ adapter_name = adapter_name ,
4643+ _pipeline = _pipeline ,
4644+ low_cpu_mem_usage = low_cpu_mem_usage ,
4645+ )
4646+
4647+ @classmethod
4648+ # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
4649+ def save_lora_weights (
4650+ cls ,
4651+ save_directory : Union [str , os .PathLike ],
4652+ transformer_lora_layers : Dict [str , Union [torch .nn .Module , torch .Tensor ]] = None ,
4653+ is_main_process : bool = True ,
4654+ weight_name : str = None ,
4655+ save_function : Callable = None ,
4656+ safe_serialization : bool = True ,
4657+ ):
4658+ r"""
4659+ Save the LoRA parameters corresponding to the UNet and text encoder.
4660+
4661+ Arguments:
4662+ save_directory (`str` or `os.PathLike`):
4663+ Directory to save LoRA parameters to. Will be created if it doesn't exist.
4664+ transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
4665+ State dict of the LoRA layers corresponding to the `transformer`.
4666+ is_main_process (`bool`, *optional*, defaults to `True`):
4667+ Whether the process calling this is the main process or not. Useful during distributed training and you
4668+ need to call this function on all processes. In this case, set `is_main_process=True` only on the main
4669+ process to avoid race conditions.
4670+ save_function (`Callable`):
4671+ The function to use to save the state dictionary. Useful during distributed training when you need to
4672+ replace `torch.save` with another method. Can be configured with the environment variable
4673+ `DIFFUSERS_SAVE_MODE`.
4674+ safe_serialization (`bool`, *optional*, defaults to `True`):
4675+ Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
4676+ """
4677+ state_dict = {}
4678+
4679+ if not transformer_lora_layers :
4680+ raise ValueError ("You must pass `transformer_lora_layers`." )
4681+
4682+ if transformer_lora_layers :
4683+ state_dict .update (cls .pack_weights (transformer_lora_layers , cls .transformer_name ))
4684+
4685+ # Save the model
4686+ cls .write_lora_layers (
4687+ state_dict = state_dict ,
4688+ save_directory = save_directory ,
4689+ is_main_process = is_main_process ,
4690+ weight_name = weight_name ,
4691+ save_function = save_function ,
4692+ safe_serialization = safe_serialization ,
4693+ )
4694+
4695+ # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.fuse_lora
4696+ def fuse_lora (
4697+ self ,
4698+ components : List [str ] = ["transformer" ],
4699+ lora_scale : float = 1.0 ,
4700+ safe_fusing : bool = False ,
4701+ adapter_names : Optional [List [str ]] = None ,
4702+ ** kwargs ,
4703+ ):
4704+ r"""
4705+ Fuses the LoRA parameters into the original parameters of the corresponding blocks.
4706+
4707+ <Tip warning={true}>
4708+
4709+ This is an experimental API.
4710+
4711+ </Tip>
4712+
4713+ Args:
4714+ components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
4715+ lora_scale (`float`, defaults to 1.0):
4716+ Controls how much to influence the outputs with the LoRA parameters.
4717+ safe_fusing (`bool`, defaults to `False`):
4718+ Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
4719+ adapter_names (`List[str]`, *optional*):
4720+ Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
4721+
4722+ Example:
4723+
4724+ ```py
4725+ from diffusers import DiffusionPipeline
4726+ import torch
4727+
4728+ pipeline = DiffusionPipeline.from_pretrained(
4729+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
4730+ ).to("cuda")
4731+ pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
4732+ pipeline.fuse_lora(lora_scale=0.7)
4733+ ```
4734+ """
4735+ super ().fuse_lora (
4736+ components = components , lora_scale = lora_scale , safe_fusing = safe_fusing , adapter_names = adapter_names
4737+ )
4738+
4739+ # Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.unfuse_lora
4740+ def unfuse_lora (self , components : List [str ] = ["transformer" ], ** kwargs ):
4741+ r"""
4742+ Reverses the effect of
4743+ [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
4744+
4745+ <Tip warning={true}>
4746+
4747+ This is an experimental API.
4748+
4749+ </Tip>
4750+
4751+ Args:
4752+ components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
4753+ unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
4754+ """
4755+ super ().unfuse_lora (components = components )
4756+
4757+
44534758class LoraLoaderMixin (StableDiffusionLoraLoaderMixin ):
44544759 def __init__ (self , * args , ** kwargs ):
44554760 deprecation_message = "LoraLoaderMixin is deprecated and this will be removed in a future version. Please use `StableDiffusionLoraLoaderMixin`, instead."
0 commit comments