88from statistics import mean , stdev
99
1010all_data = dict ()
11- with open ('papni_sequances .pickle' , 'rb' ) as handle :
11+ with open ('papni_sequences .pickle' , 'rb' ) as handle :
1212 all_data = pickle .load (handle )
1313
1414
@@ -59,21 +59,21 @@ def evaluate_model(learned_model, test_data):
5959 return [rpni_model .size , papni_model .size , rpni_error , papni_error ]
6060
6161
62- def get_sequances_from_active_sevpa (model ):
62+ def get_sequences_from_active_sevpa (model ):
6363 from aalpy import SUL , run_KV , RandomWordEqOracle , SevpaAlphabet
6464
6565 class CustomSUL (SUL ):
6666 def __init__ (self , automatonSUL ):
6767 super (CustomSUL , self ).__init__ ()
6868 self .sul = automatonSUL
69- self .sequances = []
69+ self .sequences = []
7070
7171 def pre (self ):
7272 self .tc = []
7373 self .sul .pre ()
7474
7575 def post (self ):
76- self .sequances .append (self .tc )
76+ self .sequences .append (self .tc )
7777 self .sul .post ()
7878
7979 def step (self , letter ):
@@ -91,7 +91,7 @@ def step(self, letter):
9191 # eq_oracle = BreadthFirstExplorationEqOracle(vpa_alphabet.get_merged_alphabet(), sul, 7)
9292 _ = run_KV (alphabet , sul , eq_oracle , automaton_type = 'vpa' , print_level = 3 )
9393
94- return convert_i_o_traces_for_RPNI (sul .sequances )
94+ return convert_i_o_traces_for_RPNI (sul .sequences )
9595
9696
9797def split_data_to_learning_and_testing (data , learning_to_test_ratio = 0.5 ):
@@ -104,20 +104,20 @@ def split_data_to_learning_and_testing(data, learning_to_test_ratio=0.5):
104104 # sorted(data, key=lambda x: len(x[0]))
105105 shuffle (data )
106106
107- learning_sequances , test_sequances = [], []
107+ learning_sequences , test_sequences = [], []
108108
109109 l_pos , l_neg = 0 , 0
110110 for seq , label in data :
111111 if label and l_pos <= num_learning_positive_seq :
112- learning_sequances .append ((seq , label ))
112+ learning_sequences .append ((seq , label ))
113113 l_pos += 1
114114 elif not label and l_neg <= num_learning_negative_seq :
115- learning_sequances .append ((seq , label ))
115+ learning_sequences .append ((seq , label ))
116116 l_neg += 1
117117 else :
118- test_sequances .append ((seq , label ))
118+ test_sequences .append ((seq , label ))
119119
120- return learning_sequances , test_sequances
120+ return learning_sequences , test_sequences
121121
122122
123123def run_experiment (experiment_id ,
@@ -128,7 +128,7 @@ def run_experiment(experiment_id,
128128 learning_to_test_ratio = 0.5 ):
129129 if random_data_generation :
130130 data = generate_input_output_data_from_vpa (ground_truth_model ,
131- num_sequances = num_of_learning_seq ,
131+ num_sequences = num_of_learning_seq ,
132132 max_seq_len = max_learning_seq_len ,
133133 )
134134 else :
@@ -150,7 +150,7 @@ def run_experiment(experiment_id,
150150 # wm_negative += 1
151151 # print(wm_negative)
152152
153- # data = get_sequances_from_active_sevpa (ground_truth_model)
153+ # data = get_sequences_from_active_sevpa (ground_truth_model)
154154
155155 vpa_alphabet = ground_truth_model .get_input_alphabet ()
156156
0 commit comments