|
| 1 | +import math |
| 2 | +import torch |
| 3 | +from torch import Tensor |
| 4 | +import io |
| 5 | +import time |
| 6 | +import os |
| 7 | +import pandas as pd |
| 8 | +import json |
| 9 | +from datetime import datetime |
| 10 | +import pickle |
| 11 | +from pathlib import Path |
| 12 | +from torch.utils.data import Dataset |
| 13 | +from collections import Counter |
| 14 | +from torch.nn.utils.rnn import pad_sequence |
| 15 | +import torchtext |
| 16 | +from torchtext.data.utils import get_tokenizer |
| 17 | +from collections import Counter |
| 18 | +from torchtext.vocab import vocab |
| 19 | +import numpy as np |
| 20 | +from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM |
| 21 | +import torch.nn.functional as F |
| 22 | +from pathlib import Path |
| 23 | +from . import data_selection |
| 24 | + |
| 25 | +mms_directories = [ |
| 26 | + ("mms-subset91", 'latin-1'), |
| 27 | + ("modified/location/mms", 'utf-8'), |
| 28 | + ("modified/platform/mms", 'utf-8'), |
| 29 | + ("modified/time/mms", 'utf-8'), |
| 30 | + ("modified/train_name/mms", 'utf-8'), |
| 31 | +] |
| 32 | +text_directories = [ |
| 33 | + ("annotations_full/annotations", 'latin-1'), |
| 34 | + ("modified/location/text", 'utf-8'), |
| 35 | + ("modified/platform/text", 'utf-8'), |
| 36 | + ("modified/time/text", 'utf-8'), |
| 37 | + ("modified/train_name/text", 'utf-8'), |
| 38 | +] |
| 39 | + |
| 40 | +checkpoint = 'facebook/nllb-200-distilled-600M' #for nllb |
| 41 | +tokenizer = AutoTokenizer.from_pretrained(checkpoint) |
| 42 | + |
| 43 | +def read(): |
| 44 | + data_list_only_original = [] |
| 45 | + data_list_only_modified = [] |
| 46 | + for i, text_info in enumerate(text_directories): |
| 47 | + mms_info = mms_directories[i] |
| 48 | + data_list_one = data_selection.read(text_info, mms_info) |
| 49 | + if i <= 0: |
| 50 | + data_list_only_original += data_list_one |
| 51 | + else: |
| 52 | + data_list_only_modified += data_list_one |
| 53 | + |
| 54 | + data_list_full = data_list_only_original + data_list_only_modified |
| 55 | + |
| 56 | + return (data_list_only_original, data_list_only_modified, data_list_full) |
| 57 | + |
| 58 | + |
| 59 | +class SignLanguageDataset(Dataset): |
| 60 | + def __init__(self, data_list, tokenizer, max_length=512): |
| 61 | + self.data_list = data_list |
| 62 | + self.tokenizer = tokenizer |
| 63 | + self.max_length = max_length |
| 64 | + self.vocab_size = len(tokenizer) |
| 65 | + |
| 66 | + def __len__(self): |
| 67 | + return len(self.data_list) |
| 68 | + |
| 69 | + def __getitem__(self, idx): |
| 70 | + data = self.data_list[idx] |
| 71 | + file_Id = data['file_ID'] |
| 72 | + text_tokens = self.tokenizer.encode(data['text'], add_special_tokens=True) |
| 73 | + text_tokens = torch.tensor(text_tokens) |
| 74 | + |
| 75 | + maingloss_tokens = self.tokenizer.encode(' '.join(data['maingloss']).lower(), add_special_tokens=True) |
| 76 | + maingloss_tokens = torch.tensor(maingloss_tokens) |
| 77 | + |
| 78 | + return file_Id, text_tokens, maingloss_tokens |
| 79 | + |
| 80 | + |
| 81 | +def collate_fn(batch): |
| 82 | + file_Id, text_tokens, maingloss_tokens = zip(*batch) |
| 83 | + padding_value = tokenizer.pad_token_id # here for nllb paddign token is 1 |
| 84 | + |
| 85 | + text_tokens_padded = torch.nn.utils.rnn.pad_sequence(text_tokens, batch_first=True, padding_value=padding_value) |
| 86 | + maingloss_tokens_padded = torch.nn.utils.rnn.pad_sequence(maingloss_tokens, batch_first=True, padding_value=padding_value) |
| 87 | + |
| 88 | + # Ensure all have the same sequence length |
| 89 | + max_len = max(text_tokens_padded.size(1), maingloss_tokens_padded.size(1)) |
| 90 | + |
| 91 | + text_tokens_padded = torch.nn.functional.pad(text_tokens_padded, (0, max_len - text_tokens_padded.size(1)), value=padding_value) |
| 92 | + maingloss_tokens_padded = torch.nn.functional.pad(maingloss_tokens_padded, (0, max_len - maingloss_tokens_padded.size(1)), value=padding_value) |
| 93 | + |
| 94 | + return file_Id, text_tokens_padded, maingloss_tokens_padded |
0 commit comments