@@ -6,50 +6,72 @@ Exam excercise 3, 2017-01-13
66> import Dimensions.Quantity
77> import Prelude hiding (length )
88
9- > balk_M = 1.0 # mass
9+
10+ Two boxes, m1 and m2, rests on a beam in balance.
11+
12+ Known values:
13+
14+ > beam_M = 1.0 # mass
1015> m1 = 2.0 # mass
1116> m2 = 5.0 # mass
1217> d = 0.75 # length
13- > balk_L = 5.0 # length
18+ > beam_L = 5.0 # length
1419> two = 2.0 # one
1520
1621{.float-img-left}
1722
1823Direct implication:
1924
20- $$ f(x) = \frac {a}{b}$$
25+ > beam_left_L = (beam_L /# two) +# d
26+ > beam_right_L = beam_L -# beam_left_L
2127
22- > balk_left_L = (balk_L /# two) +# d
23- > balk_right_L = balk_L -# balk_left_L
28+ We want to be able to represenet the torques.
2429
25- We want to be able to represenet the angular momentums.
26- Here are some propositions.
30+ A torque (sv. vridmoment) is defined as:
2731
28- > m1_vrid = m1 *# balk_left_L
32+ $$ \tau = distance \ from \ turning \ point \cdot force $$
2933
30- > balk_L_vrid = ((balk_left_L /# balk_L) *# balk_M) *# (balk_left_L /# two)
34+ Since all force values will be composited of a mass and the gravitation, we can ignore the gravitation.
3135
36+ $$ \tau = distance\ from\ turning\ point \cdot mass $$
3237
33- > balk_H_vrid = ((balk_right_L /# balk_L) *# balk_M) *# (balk_right_L /# two)
3438
39+ > m1_torq = m1 *# beam_left_L
3540
36- m2_vrid = m2 * x
41+ To get the beams torque on one side, we need to divide by 2 because the beam's torque is spread out linearly (the density of the beam is equal everywhere), which means the left parts mass centrum is \emph { half the distance } of the left parts total length.
3742
38- VL = HL
43+ $$ beamL_{ \tau } = beamL_{M} \cdot \frac {distance}{2} $$
3944
40- m1_vrid + balk_L_vrid = m2_vrid + balk_H_vrid
45+ $$ beamL_{ \tau } = \frac {beam \ left \ length}{beam \ length} \cdot beam_M \cdot \frac {beam \ left \ length}{2} $$
4146
42- m1_vrid + balk_L_vrid - balk_H_vrid = m2_vrid
47+ > beamL_torq = ((beam_left_L /# beam_L) *# beam_M) *# (beam_left_L /# two)
4348
44- (m1_vrid + balk_L_vrid - balk_H_vrid) / m2 = x
49+ > beamR_torq = ((beam_right_L /# beam_L) *# beam_M) *# (beam_right_L /# two)
4550
46- > x = (m1_vrid +# balk_L_vrid -# balk_H_vrid) /# m2
51+ We make an expression for $ m 2 _{ \tau } $ , which involves our unknown distance x.
4752
48- Security check:
53+ $$ m2 _{\tau } = m2 \cdot x $$
54+
55+ For the teeter to be in balance, both sides torques should be equal.
56+
57+ $$ Left\ side\ torque = Right\ side\ angular\ torque $$
58+
59+ We try to break out $ m2 _{\tau }$ and then x.
4960
50- > m2_vrid = m2 *# x
61+ $$ m1 _{\tau } + beamL_{\tau } = m2 _{\tau } + beamR_{\tau } $$
62+
63+ $$ m1 _{\tau } + beamL_{\tau } - beamR_{\tau } = m2 _{\tau } $$
64+
65+ $$ \frac {m1_{\tau } + beamL_{\tau } - beamR_{\tau }}{m2} = x $$
66+
67+ Our solution:
68+
69+ > x = (m1_torq +# beamL_torq -# beamR_torq) /# m2
70+
71+ Security check:
5172
52- > vL = m1_vrid +# balk_L_vrid
53- > hL = m2_vrid +# balk_H_vrid
73+ > m2_torq = m2 *# x
5474
75+ > left_side_torque = m1_torq +# beamL_torq
76+ > right_side_torque = m2_torq +# beamR_torq
5577
0 commit comments