Skip to content

Commit 4d75ba0

Browse files
committed
Polish on examples
1 parent 893785d commit 4d75ba0

File tree

2 files changed

+11
-10
lines changed

2 files changed

+11
-10
lines changed

Physics/src/Examples/Box_incline.lhs

Lines changed: 1 addition & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2,9 +2,7 @@ Improvmenet:
22
notation
33
formulas
44
tests
5-
6-
7-
5+
english
86

97
Box on an incline
108
=================

Physics/src/Examples/Teeter.lhs

Lines changed: 10 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -17,6 +17,7 @@ Known values:
1717
> d = 0.75 # length
1818
> beam_L = 5.0 # length
1919
> two = 2.0 # one
20+
> g = 9.0 # acceleration
2021

2122
![Teeter](teeter.png){.float-img-left}
2223

@@ -31,22 +32,24 @@ A torque (sv. vridmoment) is defined as:
3132

3233
$$ \tau = distance\ from\ turning\ point \cdot force $$
3334

34-
Since all force values will be composited of a mass and the gravitation, we can ignore the gravitation.
35+
(soon not to be) Since all force values will be composited of a mass and the gravitation, we can ignore the gravitation.
3536

36-
$$ \tau = distance\ from\ turning\ point \cdot mass $$
37+
$$ \tau = distance\ from\ turning\ point \cdot mass \cdot gravitation $$
3738

3839

39-
> m1_torq = m1 *# beam_left_L
40+
> m1_torq = m1 *# (g *# beam_left_L)
4041

4142
To get the beams torque on one side, we need to divide by 2 because the beam's torque is spread out linearly (the density of the beam is equal everywhere), which means the left parts mass centrum is \emph{half the distance} of the left parts total length.
4243

43-
$$ beamL_{\tau} = beamL_{M} \cdot \frac{distance}{2} $$
44+
$$ beamL_{\tau} = beamL_{M} \cdot gravity \cdot \frac{distance}{2} $$
4445

45-
$$ beamL_{\tau} = \frac{beam\ left\ length}{beam\ length} \cdot beam_M \cdot \frac{beam\ left\ length}{2} $$
46+
where
4647

47-
> beamL_torq = ((beam_left_L /# beam_L) *# beam_M) *# (beam_left_L /# two)
48+
$$ beamL_{M} = \frac{beam\ left\ length}{beam\ length} \cdot beam_M $$
4849

49-
> beamR_torq = ((beam_right_L /# beam_L) *# beam_M) *# (beam_right_L /# two)
50+
> beamL_torq = ((beam_left_L /# beam_L) *# (beam_M *# g)) *# (beam_left_L /# two)
51+
52+
> beamR_torq = ((beam_right_L /# beam_L) *# (beam_M *# g)) *# (beam_right_L /# two)
5053

5154
We make an expression for $m2_{\tau}$, which involves our unknown distance x.
5255

0 commit comments

Comments
 (0)