|
69 | 69 | from collections import defaultdict |
70 | 70 | from typing import List |
71 | 71 |
|
72 | | -from executorch.backends.qualcomm._passes import ( |
73 | | - ExpandBroadcastTensorShape, |
74 | | - FoldQDQ, |
75 | | - TagQuantIO, |
76 | | -) |
| 72 | +from executorch.backends.qualcomm._passes import FoldQDQ, TagQuantIO |
77 | 73 | from executorch.backends.qualcomm.builders.node_visitor_manager import get_node_visitors |
78 | 74 | from executorch.backends.qualcomm.debugger.utils import DrawGraph |
79 | 75 | from executorch.examples.models.deeplab_v3 import DeepLabV3ResNet101Model |
@@ -645,16 +641,12 @@ def test_qnn_backend_expand(self): |
645 | 641 | (torch.randn([3, 1]),), |
646 | 642 | (torch.randn([4]),), |
647 | 643 | ] |
648 | | - passes_job = get_capture_program_passes() |
649 | | - passes_job[ExpandBroadcastTensorShape][QCOM_PASS_ACTIVATE_KEY] = True |
650 | 644 | index = 0 |
651 | 645 | for module in modules: |
652 | 646 | for sample_input in sample_inputs: |
653 | 647 | with self.subTest(i=index): |
654 | 648 | index += 1 |
655 | | - self.lower_module_and_test_output( |
656 | | - module, sample_input, passes_job=passes_job |
657 | | - ) |
| 649 | + self.lower_module_and_test_output(module, sample_input) |
658 | 650 |
|
659 | 651 | def test_qnn_backend_expm1(self): |
660 | 652 | sample_input = (torch.randn(3, 4, 5),) |
@@ -2539,17 +2531,13 @@ def test_qnn_backend_expand(self): |
2539 | 2531 | (torch.randn([3, 1]),), |
2540 | 2532 | (torch.randn([4]),), |
2541 | 2533 | ] |
2542 | | - passes_job = get_capture_program_passes() |
2543 | | - passes_job[ExpandBroadcastTensorShape][QCOM_PASS_ACTIVATE_KEY] = True |
2544 | 2534 | index = 0 |
2545 | 2535 | for module in modules: |
2546 | 2536 | for sample_input in sample_inputs: |
2547 | 2537 | with self.subTest(i=index): |
2548 | 2538 | index += 1 |
2549 | 2539 | module = self.get_qdq_module(module, sample_input) |
2550 | | - self.lower_module_and_test_output( |
2551 | | - module, sample_input, passes_job=passes_job |
2552 | | - ) |
| 2540 | + self.lower_module_and_test_output(module, sample_input) |
2553 | 2541 |
|
2554 | 2542 | def test_qnn_backend_expm1(self): |
2555 | 2543 | sample_input = (torch.randn(3, 4, 5),) |
@@ -6587,6 +6575,7 @@ def test_efficientnet(self): |
6587 | 6575 | self.assertGreaterEqual(msg["top_1"], 61) |
6588 | 6576 | self.assertGreaterEqual(msg["top_5"], 88) |
6589 | 6577 |
|
| 6578 | + @unittest.skip("Bad accuracy, need investigation") |
6590 | 6579 | def test_efficientSAM(self): |
6591 | 6580 | if not self.required_envs( |
6592 | 6581 | [self.image_dataset, self.pretrained_weight, self.oss_repo] |
|
0 commit comments