|
| 1 | +/** |
| 2 | + * Solution 1. recursive - failed with Stack Overflow |
| 3 | + */ |
| 4 | +function uniquePaths(m: number, n: number): number { |
| 5 | + function factorialMemo() { |
| 6 | + const cache = [0, 1]; |
| 7 | + return function factorial(n: number) { |
| 8 | + if (cache[n]) return cache[n]; |
| 9 | + cache[n] = n * factorial(n - 1); |
| 10 | + return cache[n]; |
| 11 | + }; |
| 12 | + } |
| 13 | + |
| 14 | + const factorial = factorialMemo(); |
| 15 | + const total = m + n - 2; |
| 16 | + const right = m - 1; |
| 17 | + return Math.round( |
| 18 | + factorial(total) / (factorial(right) * factorial(total - right)) |
| 19 | + ); |
| 20 | +} |
| 21 | + |
| 22 | +/** |
| 23 | + * Solution 2. for loop (with some 야매.. but it works) |
| 24 | + * https://leetcode.com/problems/unique-paths |
| 25 | + * T.C. O(m + n) |
| 26 | + * S.C. O(m + n) |
| 27 | + */ |
| 28 | +function uniquePaths(m: number, n: number): number { |
| 29 | + function factorialMemo() { |
| 30 | + const cache = [1, 1]; |
| 31 | + return function factorial(n: number) { |
| 32 | + if (cache[n]) return cache[n]; |
| 33 | + let result = cache[cache.length - 1]; |
| 34 | + for (let i = cache.length; i <= n; i++) { |
| 35 | + result = result * i; |
| 36 | + cache[i] = result; |
| 37 | + } |
| 38 | + return result; |
| 39 | + }; |
| 40 | + } |
| 41 | + |
| 42 | + const factorial = factorialMemo(); |
| 43 | + const total = m + n - 2; |
| 44 | + const right = m - 1; |
| 45 | + return Math.round( |
| 46 | + factorial(total) / (factorial(right) * factorial(total - right)) |
| 47 | + ); |
| 48 | +} |
| 49 | + |
| 50 | +/** |
| 51 | + * Solution 3. DP |
| 52 | + * T.C. O(m * n) |
| 53 | + * S.C. O(m * n) |
| 54 | + */ |
| 55 | +function uniquePaths(m: number, n: number): number { |
| 56 | + const dp: number[][] = Array.from({ length: m }, () => Array(n).fill(1)); |
| 57 | + |
| 58 | + for (let i = 1; i < m; i++) { |
| 59 | + for (let j = 1; j < n; j++) { |
| 60 | + dp[i][j] = dp[i - 1][j] + dp[i][j - 1]; |
| 61 | + } |
| 62 | + } |
| 63 | + |
| 64 | + return dp[m - 1][n - 1]; |
| 65 | +} |
0 commit comments