|
| 1 | +# Intuition |
| 2 | +์ด์ ์ ํ์ด๋ดค๋ ๋ฌธ์ ์๋ค! ์ด๋ ค์ด ๋ฌธ์ ์๋ค๋ ์๊ฐ์ ๋ฒ์ด๋์ง๊ณ ์ต๋ํ ๊ฐ๋จํ๊ฒ ํ์ด๋ณด๋ ค๊ณ ํ๋ค. |
| 3 | +# Approach |
| 4 | +<!-- Describe your approach to solving the problem. --> |
| 5 | +1. ๋ ๋
ธ๋(`p`, `q`) ๋ชจ๋ ์ด๋ ํ ๊ฒฝ๋ก๋ฅผ ๊ฑฐ์ณ, ํด๋น ๋
ธ๋๊น์ง ๋์ฐฉํ๋์ง ์กฐ์๋ค์ ๋ฐฐ์ด(`routes`)์ ์ ์ฅํ๋ค. |
| 6 | +2. ๋ฐฐ์ด์ ํ๋์ฉ ๋น๊ตํด๊ฐ๋ฉฐ, ๋ ๋
ธ๋๊ฐ ์๊ฐ๋ฆฌ๋ ์ง์ (`pRoutes[idx] != qRoutes[idx]`)์ ์ฐพ๋๋ค. |
| 7 | +3. ๊ทธ ์ง์ ๋ฐ๋ก ์ด์ ์ง์ (`[idx-1]`)์ด ์ต์ ๊ณตํต ์กฐ์์ด๋ค. |
| 8 | +# Complexity |
| 9 | +- Time complexity |
| 10 | + - ํ๊ท : $O(log(n))$ |
| 11 | + - ์ต์
: $O(n)$ |
| 12 | + - ํธ๋ฆฌ์ ๋์ด๋งํผ ์ํ๋ฅผ ํ๊ฒ๋๋ค. ๋
ธ๋๊ฐ n๊ฐ ์ด๋ฏ๋ก, ํธ๋ฆฌ์ ๋์ด๋ ์ต์ `log(n)`, ์ต์
`n`์ด ๋๋ค. |
| 13 | + |
| 14 | +- Space complexity |
| 15 | + - ํ๊ท : $O(log(n))$ |
| 16 | + - ์ต์
: $O(n)$ |
| 17 | + - ํธ๋ฆฌ์ ๋์ด๋งํผ ์ํ๋ฅผ ํ๊ฒ๋๋ค. ๋
ธ๋๊ฐ n๊ฐ ์ด๋ฏ๋ก, ํธ๋ฆฌ์ ๋์ด๋ ์ต์ `log(n)`, ์ต์
`n`์ด ๋๋ค. |
| 18 | + |
| 19 | +# Code |
| 20 | +```go |
| 21 | +func getRoutes(head, target *TreeNode) []*TreeNode { |
| 22 | + routes := make([]*TreeNode, 0) |
| 23 | + |
| 24 | + curr := head |
| 25 | + for curr.Val != target.Val { |
| 26 | + routes = append(routes, curr) |
| 27 | + if target.Val == curr.Val { |
| 28 | + break |
| 29 | + } else if target.Val < curr.Val { |
| 30 | + curr = curr.Left |
| 31 | + } else { |
| 32 | + curr = curr.Right |
| 33 | + } |
| 34 | + } |
| 35 | + return append(routes, curr) |
| 36 | +} |
| 37 | + |
| 38 | +func lowestCommonAncestor(root, p, q *TreeNode) *TreeNode { |
| 39 | + pRoutes := getRoutes(root, p) |
| 40 | + qRoutes := getRoutes(root, q) |
| 41 | + |
| 42 | + idx := 0 |
| 43 | + for idx < min(len(pRoutes), len(qRoutes)) && pRoutes[idx] == qRoutes[idx] { |
| 44 | + idx++ |
| 45 | + } |
| 46 | + |
| 47 | + return pRoutes[idx-1] |
| 48 | +} |
| 49 | + |
| 50 | +``` |
| 51 | +# Intuition & Approach |
| 52 | +(์๋ฃจ์
์ ํด๊ฒฐ๋ฒ ์ฐธ๊ณ ) |
| 53 | + |
| 54 | +๋ ๋
ธ๋๋ ๊ณตํต์กฐ์๊น์ง๋ ๋์ผํ ๋์๊ด๊ณ๋ฅผ ๊ฐ์ง๊ณ ์๋ค๊ฐ, ๊ณตํต ์กฐ์ ์ดํ๋ก ๋์๊ด๊ณ๊ฐ ๊ตฌ๋ถ๋๋ค. |
| 55 | +๋ฐ๋ผ์, ๋ฃจํธ์์ ๋์ผํ ๋์๊ด๊ณ๊ฐ ์๋ ์กฐ์๊น์ง ์ด๋ํ๋ค. (๋ค์ ๋งํด, ๋์ ๊ด๊ณ๊ฐ ๊ตฌ๋ถ๋๋ ํน์ ์ง์ ์ด ๋ฐ์ํ๋ค๋ฉด ๊ทธ ์ง์ ์ ๋ถ๋ชจ๊ฐ ๊ณตํต ์กฐ์์ด๋ค.) |
| 56 | +# Complexity |
| 57 | +- Time complexity |
| 58 | + - ํ๊ท : $O(log(n))$ |
| 59 | + - ์ต์
: $O(n)$ |
| 60 | + - ํธ๋ฆฌ์ ๋์ด๋งํผ ์ํ๋ฅผ ํ๊ฒ๋๋ค. ๋
ธ๋๊ฐ n๊ฐ ์ด๋ฏ๋ก, ํธ๋ฆฌ์ ๋์ด๋ ์ต์ `log(n)`, ์ต์
`n`์ด ๋๋ค. |
| 61 | + |
| 62 | +- Space complexity: $O(1)$ |
| 63 | + - ๋ณ๋ ์๋ฃ๊ตฌ์กฐ๋ฅผ ์ฌ์ฉํ์ง ์๊ณ , ๋งํฌ๋ ๋ฆฌ์คํธ์ ์ํ๋ง์ด ์กด์ฌํ๋ค. |
| 64 | + |
| 65 | +# Code |
| 66 | +## For-loop |
| 67 | +```go |
| 68 | +func lowestCommonAncestor(root, p, q *TreeNode) *TreeNode { |
| 69 | + curr := root |
| 70 | + for { |
| 71 | + if p.Val < curr.Val && q.Val < curr.Val { |
| 72 | + curr = curr.Left |
| 73 | + } else if p.Val > curr.Val && q.Val > curr.Val { |
| 74 | + curr = curr.Right |
| 75 | + } else { |
| 76 | + break |
| 77 | + } |
| 78 | + } |
| 79 | + return curr |
| 80 | +} |
| 81 | + |
| 82 | +``` |
| 83 | +## Recursion |
| 84 | +```go |
| 85 | +func lowestCommonAncestor(root, p, q *TreeNode) *TreeNode { |
| 86 | + if p.Val < root.Val && q.Val < root.Val { |
| 87 | + return lowestCommonAncestor(root.Left, p, q) |
| 88 | + } else if p.Val > root.Val && q.Val > root.Val { |
| 89 | + return lowestCommonAncestor(root.Right, p, q) |
| 90 | + } |
| 91 | + return root |
| 92 | +} |
| 93 | + |
| 94 | +``` |
| 95 | +: ํจ์ ์ฝ์คํ์ด ํธ๋ฆฌ์ ๋์ด๋งํผ ์ฆ๊ฐํ๋ฏ๋ก, ๊ณต๊ฐ ๋ณต์ก๋๊ฐ O(n)๊น์ง ์ฆ๊ฐํ ์ ์๋ค. (์ฒ์ ํด๊ฒฐ๋ฒ์ ๊ณต๊ฐ ๋ณต์ก๋์ฒ๋ผ.) |
0 commit comments