|
| 1 | +// 🌈 In-Place Solution (Without extra space) |
| 2 | +// The term "in-place" refers to algorithms or solutions that modify the input data directly, |
| 3 | +// without needing extra space for a separate copy of the data. In an in-place solution, |
| 4 | +// the operations are performed using a fixed amount of extra memory, typically O(1) space, beyond the input data itself. |
| 5 | + |
| 6 | +/** |
| 7 | + * @param {number[][]} matrix |
| 8 | + * @return {void} Do not return anything, modify matrix in-place instead. |
| 9 | + */ |
| 10 | + |
| 11 | +// Time Complexity: O(m * n) |
| 12 | +// Space Complexity: O(1) |
| 13 | +var setZeroes = function (matrix) { |
| 14 | + const rows = matrix.length; |
| 15 | + const cols = matrix[0].length; |
| 16 | + |
| 17 | + let firstRowHasZero = false; |
| 18 | + let firstColHasZero = false; |
| 19 | + |
| 20 | + // Check if the first row has any zero |
| 21 | + for (let c = 0; c < cols; c++) { |
| 22 | + if (matrix[0][c] === 0) { |
| 23 | + firstRowHasZero = true; |
| 24 | + break; |
| 25 | + } |
| 26 | + } |
| 27 | + |
| 28 | + // Check if the first column has any zero |
| 29 | + for (let r = 0; r < rows; r++) { |
| 30 | + if (matrix[r][0] === 0) { |
| 31 | + firstColHasZero = true; |
| 32 | + break; |
| 33 | + } |
| 34 | + } |
| 35 | + |
| 36 | + // Use first row and column to mark zeros |
| 37 | + for (let i = 1; i < rows; i++) { |
| 38 | + for (let j = 1; j < cols; j++) { |
| 39 | + if (matrix[i][j] === 0) { |
| 40 | + matrix[0][j] = 0; |
| 41 | + matrix[i][0] = 0; |
| 42 | + } |
| 43 | + } |
| 44 | + } |
| 45 | + |
| 46 | + // Set zeros based on marks in the first row and column |
| 47 | + for (let i = 1; i < rows; i++) { |
| 48 | + for (let j = 1; j < cols; j++) { |
| 49 | + if (matrix[0][j] === 0 || matrix[i][0] === 0) { |
| 50 | + matrix[i][j] = 0; |
| 51 | + } |
| 52 | + } |
| 53 | + } |
| 54 | + |
| 55 | + // Handle first row |
| 56 | + if (firstRowHasZero) { |
| 57 | + for (let c = 0; c < cols; c++) { |
| 58 | + matrix[0][c] = 0; |
| 59 | + } |
| 60 | + } |
| 61 | + |
| 62 | + // Handle first column |
| 63 | + if (firstColHasZero) { |
| 64 | + for (let r = 0; r < rows; r++) { |
| 65 | + matrix[r][0] = 0; |
| 66 | + } |
| 67 | + } |
| 68 | + |
| 69 | + return matrix; |
| 70 | +}; |
| 71 | + |
| 72 | +/** |
| 73 | + * @param {number[][]} matrix |
| 74 | + * @return {void} Do not return anything, modify matrix in-place instead. |
| 75 | + */ |
| 76 | + |
| 77 | +// 💪 My initial approach with Set... |
| 78 | +// Time Complexity: O(m * n) |
| 79 | +// Space Complexity: O(m + n) |
| 80 | +var setZeroes = function (matrix) { |
| 81 | + let rows = new Set(); |
| 82 | + let cols = new Set(); |
| 83 | + |
| 84 | + for (let i = 0; i < matrix.length; i++) { |
| 85 | + for (let j = 0; j < matrix[0].length; j++) { |
| 86 | + if (matrix[i][j] === 0) { |
| 87 | + rows.add(i); |
| 88 | + cols.add(j); |
| 89 | + } |
| 90 | + } |
| 91 | + } |
| 92 | + |
| 93 | + for (row of rows) { |
| 94 | + matrix[row] = new Array(matrix[0].length).fill(0); |
| 95 | + } |
| 96 | + |
| 97 | + for (col of cols) { |
| 98 | + for (let row = 0; row < matrix.length; row++) { |
| 99 | + matrix[row][col] = 0; |
| 100 | + } |
| 101 | + } |
| 102 | + |
| 103 | + return matrix; |
| 104 | +}; |
| 105 | + |
| 106 | + |
0 commit comments