|
| 1 | +/* |
| 2 | + * μμ΄λμ΄ |
| 3 | + * μΈ΅μ μ ν: 1 <= n <= 45 |
| 4 | + * 1 or 2 step λ§ μ¬λΌκ° μ μμ |
| 5 | + |
| 6 | + * 1 -> [1] |
| 7 | + * 2 -> [1,1] [2] |
| 8 | + * 3 -> [1,1,1] [2,1] [1,2] |
| 9 | + * 4 -> [1,1,1,1] [2,1,1] [1,2,1] [1,1,2] [2,2] |
| 10 | + * 5 -> [1,1,1,1,1] [2,1,1,1] [1,2,1,1] [1,1,2,1] [1,1,1,2] [2,2,1], [1,2,2], [2,1,2] |
| 11 | + * 6 -> [1,1,1,1,1,1] [2,1,1,1,1] [...] [1,1,1,1,2] [2,2,1,1], [2,1,2,1], [2,1,1,2] [1,1,2,2], [1,2,1,2], [1,2,2,1] |
| 12 | + => (1:n, 2:0) nκ°μ§ (1:n-2, 2:1) / nκ°μ§ (1: n-4, 2: n/2) C(n, n/2) κ°μ§ |
| 13 | + */ |
| 14 | +function climbStairs(n: number): number { |
| 15 | + // # Solution 1 |
| 16 | + |
| 17 | + // const stair = {1: 1, 2:2} |
| 18 | + // for(let i = 3; i<=n; i++){ |
| 19 | + // stair[i] = stair[i-1] + stair[i-2] |
| 20 | + // } |
| 21 | + // TC: O(N) |
| 22 | + // SC: O(N) |
| 23 | + |
| 24 | + // # Solution 2 |
| 25 | + |
| 26 | + // if(n < 3) return n |
| 27 | + // let curr = 2 // νμ¬ κ³λ¨μ μ€λ₯΄λ λ°©λ² μ |
| 28 | + // let prev = 1 // μ΄μ κ³λ¨μ μ€λ₯΄λ λ°©λ² μ |
| 29 | + |
| 30 | + // for(let i=0; i<n-2; i++){ |
| 31 | + // const next = prev + curr; |
| 32 | + // prev = curr; |
| 33 | + // curr = next; |
| 34 | + // } |
| 35 | + |
| 36 | + // return curr |
| 37 | + // TC: O(N) |
| 38 | + // SC: O(1) |
| 39 | + |
| 40 | + // # Solution 3: μ¬κ· |
| 41 | + const memo = { 1: 1, 2: 2 }; |
| 42 | + function calculateClimbingWay(n, memo) { |
| 43 | + if (n in memo) return memo[n]; |
| 44 | + |
| 45 | + if (n < 3) { |
| 46 | + return n; |
| 47 | + } |
| 48 | + memo[n] = |
| 49 | + calculateClimbingWay(n - 1, memo) + calculateClimbingWay(n - 2, memo); |
| 50 | + |
| 51 | + return memo[n]; |
| 52 | + } |
| 53 | + return calculateClimbingWay(n, memo); |
| 54 | + // TC: O(N) |
| 55 | + // SC: O(N) |
| 56 | +} |
0 commit comments