|
| 1 | +/** |
| 2 | + * [Problem]: [62] Unique Paths |
| 3 | + * (https://leetcode.com/problems/unique-paths/description/) |
| 4 | + */ |
| 5 | + |
| 6 | +function uniquePaths(m: number, n: number): number { |
| 7 | + //시간복잡도 O(2^(m*n)) |
| 8 | + //공간복잡도 O(m*n) |
| 9 | + // Time Limit Exceeded |
| 10 | + function dfsFunc(m: number, n: number): number { |
| 11 | + let result: number = 0; |
| 12 | + function dfs(row: number, col: number) { |
| 13 | + if (row === m - 1 && col === n - 1) result++; |
| 14 | + if (row + 1 < m) dfs(row + 1, col); |
| 15 | + if (col + 1 < n) dfs(row, col + 1); |
| 16 | + } |
| 17 | + |
| 18 | + dfs(0, 0); |
| 19 | + return result; |
| 20 | + } |
| 21 | + |
| 22 | + //시간복잡도 O(m*n) |
| 23 | + //공간복잡도 O(m*n) |
| 24 | + function memoizationFunc(m: number, n: number): number { |
| 25 | + let memo = new Map<string, number>(); |
| 26 | + |
| 27 | + function dfs(row: number, col: number) { |
| 28 | + const key = `${row}|${col}`; |
| 29 | + |
| 30 | + if (memo.has(key)) return memo.get(key); |
| 31 | + if (row === m - 1 && col === n - 1) return 1; |
| 32 | + if (row >= m || col >= n) return 0; |
| 33 | + |
| 34 | + const result = dfs(row + 1, col) + dfs(row, col + 1); |
| 35 | + |
| 36 | + memo.set(key, result); |
| 37 | + return result; |
| 38 | + } |
| 39 | + |
| 40 | + return dfs(0, 0); |
| 41 | + } |
| 42 | + //시간복잡도 O(m*n) |
| 43 | + //공간복잡도 O(m*n) |
| 44 | + function dpFunc(m: number, n: number): number { |
| 45 | + let dp: number[][] = Array.from({ length: m }, () => Array(n).fill(1)); |
| 46 | + |
| 47 | + for (let i = 1; i < m; i++) { |
| 48 | + for (let j = 1; j < n; j++) { |
| 49 | + dp[i][j] = dp[i - 1][j] + dp[i][j - 1]; |
| 50 | + } |
| 51 | + } |
| 52 | + |
| 53 | + return dp[m - 1][n - 1]; |
| 54 | + } |
| 55 | + //시간복잡도 O(m*n) |
| 56 | + //공간복잡도 O(n) |
| 57 | + function optimizationFunc(m: number, n: number): number { |
| 58 | + let dp: number[] = new Array(n).fill(1); |
| 59 | + for (let i = 1; i < m; i++) { |
| 60 | + let left = 1; |
| 61 | + for (let j = 1; j < n; j++) { |
| 62 | + dp[j] += left; |
| 63 | + left = dp[j]; |
| 64 | + } |
| 65 | + } |
| 66 | + |
| 67 | + return dp[n - 1]; |
| 68 | + } |
| 69 | +} |
0 commit comments