Skip to content

Commit 754e288

Browse files
authored
Merge pull request #52 from lixfz/master
Rename trail to trial
2 parents 5c0eeb4 + b5bdcfd commit 754e288

File tree

4 files changed

+15
-15
lines changed

4 files changed

+15
-15
lines changed

deeptables/models/hyper_dt.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -201,14 +201,14 @@ def _get_estimator(self, space_sample):
201201
estimator = DTEstimator(space_sample, self.cache_preprocessed_data, self.cache_home, **self.config_kwargs)
202202
return estimator
203203

204-
def export_trail_configuration(self, trail):
204+
def export_trial_configuration(self, trial):
205205
default_conf = ModelConfig()
206-
new_conf = trail.space_sample.DT_Module.config
206+
new_conf = trial.space_sample.DT_Module.config
207207
conf_set = []
208208
for f in default_conf._fields:
209209
if new_conf.__getattribute__(f) != default_conf.__getattribute__(f):
210210
conf_set.append(f'\n\t{f}={new_conf.__getattribute__(f)}')
211-
str = f'ModelConfig({",".join(conf_set)})\n\nfit params:{trail.space_sample.fit_params.param_values}'
211+
str = f'ModelConfig({",".join(conf_set)})\n\nfit params:{trial.space_sample.fit_params.param_values}'
212212
return str
213213

214214

tests/models/hyper_dt_regression_test.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -42,9 +42,9 @@ def test_boston(self):
4242
'dnn_activation': 'relu',
4343
},
4444
)
45-
hdt.search(self.X_train, self.y_train, self.X_test, self.y_test, max_trails=3)
45+
hdt.search(self.X_train, self.y_train, self.X_test, self.y_test, max_trials=3)
4646

47-
best_trial = hdt.get_best_trail()
47+
best_trial = hdt.get_best_trial()
4848

4949
estimator = hdt.final_train(best_trial.space_sample, self.X, self.y)
5050
score = estimator.predict(self.X_test)

tests/models/hyper_dt_test.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@ def bankdata(self):
2323
hdt = HyperDT(rs,
2424
callbacks=[SummaryCallback(), FileLoggingCallback(rs, output_dir=f'{homedir}/hyn_logs')],
2525
reward_metric='accuracy',
26-
max_trails=3,
26+
max_trials=3,
2727
dnn_params={
2828
'hidden_units': ((256, 0, False), (256, 0, False)),
2929
'dnn_activation': 'relu',
@@ -37,8 +37,8 @@ def bankdata(self):
3737
y_test = df_test.pop('y')
3838

3939
hdt.search(df_train, y, df_test, y_test)
40-
assert hdt.best_model
41-
best_trial = hdt.get_best_trail()
40+
best_trial = hdt.get_best_trial()
41+
assert best_trial
4242

4343
estimator = hdt.final_train(best_trial.space_sample, df_train, y)
4444
score = estimator.predict(df)
@@ -80,8 +80,8 @@ def test_hyper_dt(self):
8080

8181
y = np.random.randint(0, 2, size=(100), dtype='int')
8282
df = pd.DataFrame({'x1': x1, 'x2': x2, 'x3': x3, 'x4': x4})
83-
hdt.search(df, y, df, y, max_trails=3, epochs=1)
84-
best_trial = hdt.get_best_trail()
83+
hdt.search(df, y, df, y, max_trials=3, epochs=1)
84+
best_trial = hdt.get_best_trial()
8585
model = hdt.load_estimator(best_trial.model_file)
8686
assert model
8787
score = model.predict(df)

tests/models/run_dt.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -12,12 +12,12 @@
1212
from hypernets.core.callbacks import SummaryCallback, FileLoggingCallback
1313
from hypernets.searchers.mcts_searcher import MCTSSearcher
1414
from hypernets.searchers.evolution_searcher import EvolutionSearcher
15-
from hypernets.core.trial import DiskTrailStore
15+
from hypernets.core.trial import DiskTrialStore
1616
from deeptables.datasets import dsutils
1717
from sklearn.model_selection import train_test_split
1818
from .. import homedir
1919

20-
disk_trail_store = DiskTrailStore(f'{homedir}/trail_store')
20+
disk_trial_store = DiskTrialStore(f'{homedir}/trial_store')
2121

2222
# searcher = MCTSSearcher(mini_dt_space, max_node_space=0,optimize_direction=OptimizeDirection.Maximize)
2323
# searcher = RandomSearcher(mini_dt_space, optimize_direction=OptimizeDirection.Maximize)
@@ -41,9 +41,9 @@
4141
y = df_train.pop(14)
4242
y_test = df_test.pop(14)
4343
# dataset_id='adult_whole_data',
44-
hdt.search(df_train, y, df_test, y_test, max_trails=2000, batch_size=256, epochs=10, verbose=1, )
45-
assert hdt.best_model
46-
best_trial = hdt.get_best_trail()
44+
hdt.search(df_train, y, df_test, y_test, max_trials=2000, batch_size=256, epochs=10, verbose=1, )
45+
best_trial = hdt.get_best_trial()
46+
assert best_trial
4747

4848
estimator = hdt.final_train(best_trial.space_sample, df_train, y)
4949
score = estimator.predict(df_test)

0 commit comments

Comments
 (0)