@@ -422,7 +422,7 @@ def estimate(self, data=None, quantity=None):
422422
423423 effect = self ._prepare4est (data )
424424
425- logger .info (f"Start estimating the causal effect with the type of { quantity } ." )
425+ logger .debug (f"Start estimating the causal effect with the type of { quantity } ." )
426426
427427 if quantity == "ATE" or quantity == "CATE" :
428428 np .mean (effect , axis = 0 )
@@ -899,7 +899,7 @@ def _fit_with_array(self, y, x, w, v, treat, control):
899899 # criterion = deepcopy(CMSE(self.n_outputs_, n_samples))
900900 criterion = deepcopy (HonestCMSE (self .n_outputs_ , n_samples ))
901901
902- logger .info (
902+ logger .debug (
903903 f"Start building the causal tree with criterion { type (criterion ).__name__ } "
904904 )
905905
@@ -915,7 +915,7 @@ def _fit_with_array(self, y, x, w, v, treat, control):
915915 random_state ,
916916 )
917917
918- logger .info (f"Building the causal tree with splitter { type (splitter ).__name__ } " )
918+ logger .debug (f"Building the causal tree with splitter { type (splitter ).__name__ } " )
919919
920920 # Build tree step 3. Define the tree
921921 self .tree_ = Tree (
@@ -945,7 +945,7 @@ def _fit_with_array(self, y, x, w, v, treat, control):
945945 self .min_impurity_decrease ,
946946 )
947947
948- logger .info (f"Building the causal tree with builder { type (builder ).__name__ } " )
948+ logger .debug (f"Building the causal tree with builder { type (builder ).__name__ } " )
949949
950950 if self .honest_sample is None :
951951 builder .build (self .tree_ , wv , y , sample_weight )
0 commit comments