|
389 | 389 | " try:\n", |
390 | 390 | "\n", |
391 | 391 | " result = explanation_sensitivity_all_neighbors(\n", |
392 | | - " dataset[\"data\"][0], \n", |
| 392 | + " dataset[\"data\"][0],\n", |
393 | 393 | " results[dataset[\"name\"]][method][0],\n", |
394 | 394 | " rankings,\n", |
395 | 395 | " measure=\"euclidean\",\n", |
396 | 396 | " normalization=False,\n", |
397 | | - " #n_features=0.8,\n", |
398 | | - " threshold=0.1\n", |
| 397 | + " # n_features=0.8,\n", |
| 398 | + " threshold=0.1,\n", |
399 | 399 | " )\n", |
400 | | - " \n", |
401 | | - " df_length = dataset['data'][0].shape[0]\n", |
402 | | - " for plot_idx in [int(num/10*df_length) for num in range(1,10,1)]:\n", |
403 | | - " measure_distances, rank_distances, feature_distances = result(row_idx=plot_idx)\n", |
404 | | - " \n", |
| 400 | + "\n", |
| 401 | + " df_length = dataset[\"data\"][0].shape[0]\n", |
| 402 | + " for plot_idx in [int(num / 10 * df_length) for num in range(1, 10, 1)]:\n", |
| 403 | + " measure_distances, rank_distances, feature_distances = result(\n", |
| 404 | + " row_idx=plot_idx\n", |
| 405 | + " )\n", |
| 406 | + "\n", |
405 | 407 | " temp = pd.DataFrame()\n", |
406 | | - " \n", |
407 | | - " temp['Explanation distance'] = measure_distances\n", |
408 | | - " temp['Absolute Rank distance'] = np.absolute(rank_distances)\n", |
409 | | - " temp['Feature distance'] = feature_distances\n", |
410 | | - " sns.scatterplot(data=temp, x=\"Explanation distance\", y=\"Absolute Rank distance\", hue=\"Feature distance\")\n", |
411 | | - " leg = plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))\n", |
| 408 | + "\n", |
| 409 | + " temp[\"Explanation distance\"] = measure_distances\n", |
| 410 | + " temp[\"Absolute Rank distance\"] = np.absolute(rank_distances)\n", |
| 411 | + " temp[\"Feature distance\"] = feature_distances\n", |
| 412 | + " sns.scatterplot(\n", |
| 413 | + " data=temp,\n", |
| 414 | + " x=\"Explanation distance\",\n", |
| 415 | + " y=\"Absolute Rank distance\",\n", |
| 416 | + " hue=\"Feature distance\",\n", |
| 417 | + " )\n", |
| 418 | + " leg = plt.legend(loc=\"center left\", bbox_to_anchor=(1, 0.5))\n", |
412 | 419 | " # plt.title(f'{method} and {dataset[\"name\"]} and rank={plot_idx}')\n", |
413 | 420 | " # sns.move_legend(ax, \"upper left\", bbox_to_anchor=(1, 1))\n", |
414 | | - " \n", |
| 421 | + "\n", |
415 | 422 | " plt.savefig(\n", |
416 | | - " f\"results/sensitivity-scatterplot-{dataset[\"name\"]}-{method}-{plot_idx}.pdf\",\n", |
417 | | - " format=\"pdf\",\n", |
418 | | - " bbox_inches=\"tight\",\n", |
419 | | - " transparent=True\n", |
| 423 | + " f\"results/sensitivity-scatterplot-{dataset[\"name\"]}-{method}-{plot_idx}.pdf\",\n", |
| 424 | + " format=\"pdf\",\n", |
| 425 | + " bbox_inches=\"tight\",\n", |
| 426 | + " transparent=True,\n", |
420 | 427 | " )\n", |
421 | 428 | " plt.show()\n", |
422 | 429 | " # plt.clf()\n", |
|
646 | 653 | " # print(\"Unknown QoI\")\n", |
647 | 654 | "\n", |
648 | 655 | " # print(method[\"name\"], max_target)\n", |
649 | | - " \n", |
| 656 | + "\n", |
650 | 657 | " # for dataset in datasets:\n", |
651 | 658 | " # rankings = scores_to_ordering(dataset[\"scorer\"](dataset[\"data\"][0]))\n", |
652 | 659 | " # # try:\n", |
653 | 660 | " # result = explanation_sensitivity_all_neighbors(\n", |
654 | | - " # dataset[\"data\"][0], \n", |
| 661 | + " # dataset[\"data\"][0],\n", |
655 | 662 | " # results[dataset[\"name\"]][method[\"name\"]][0],\n", |
656 | 663 | " # rankings,\n", |
657 | 664 | " # measure=\"euclidean\",\n", |
|
664 | 671 | " # df_length = dataset['data'][0].shape[0]\n", |
665 | 672 | " # for plot_idx in [int(num/10*df_length) for num in range(1,10,1)]:\n", |
666 | 673 | " # measure_distances, rank_distances, feature_distances = result(row_idx=plot_idx)\n", |
667 | | - " \n", |
| 674 | + "\n", |
668 | 675 | " # temp = pd.DataFrame()\n", |
669 | | - " \n", |
| 676 | + "\n", |
670 | 677 | " # temp['Explanation distance'] = measure_distances\n", |
671 | 678 | " # temp['Absolute Rank distance'] = np.absolute(rank_distances)\n", |
672 | 679 | " # temp['Feature distance'] = feature_distances\n", |
673 | 680 | " # sns.scatterplot(data=temp, x=\"Explanation distance\", y=\"Absolute Rank distance\", hue=\"Feature distance\")\n", |
674 | 681 | " # leg = plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))\n", |
675 | 682 | " # # plt.title(f'{method} and {dataset[\"name\"]} and rank={plot_idx}')\n", |
676 | 683 | " # # sns.move_legend(ax, \"upper left\", bbox_to_anchor=(1, 1))\n", |
677 | | - " \n", |
| 684 | + "\n", |
678 | 685 | " # plt.savefig(\n", |
679 | 686 | " # f\"results/sensitivity-scatterplot-{dataset[\"name\"]}-{method[\"name\"]}-{plot_idx}.pdf\",\n", |
680 | 687 | " # format=\"pdf\",\n", |
|
688 | 695 | " # # pass\n", |
689 | 696 | " for dataset in datasets:\n", |
690 | 697 | " print(method[\"name\"])\n", |
691 | | - " print(\"\\t\",dataset[\"name\"])\n", |
692 | | - " print(\"\\t\\t\",results[dataset[\"name\"]][method[\"name\"]][0].sum(axis=1).max())" |
| 698 | + " print(\"\\t\", dataset[\"name\"])\n", |
| 699 | + " print(\"\\t\\t\", results[dataset[\"name\"]][method[\"name\"]][0].sum(axis=1).max())" |
693 | 700 | ] |
694 | 701 | }, |
695 | 702 | { |
|
1678 | 1685 | "evalue": "name 'dataset' is not defined", |
1679 | 1686 | "output_type": "error", |
1680 | 1687 | "traceback": [ |
1681 | | - "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m", |
1682 | | - "\u001B[0;31mNameError\u001B[0m Traceback (most recent call last)", |
1683 | | - "Cell \u001B[0;32mIn[10], line 1\u001B[0m\n\u001B[0;32m----> 1\u001B[0m dataset[\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mscorer\u001B[39m\u001B[38;5;124m\"\u001B[39m]\n", |
1684 | | - "\u001B[0;31mNameError\u001B[0m: name 'dataset' is not defined" |
| 1688 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 1689 | + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", |
| 1690 | + "Cell \u001b[0;32mIn[10], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m dataset[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mscorer\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n", |
| 1691 | + "\u001b[0;31mNameError\u001b[0m: name 'dataset' is not defined" |
1685 | 1692 | ] |
1686 | 1693 | } |
1687 | 1694 | ], |
|
0 commit comments