|
1 | 1 | --- |
| 2 | +title: 'Product Analytics & A/B Testing: Causality, Metrics, Power Analysis, A/A Tests' |
| 3 | +short: A/B Testing |
| 4 | +season: 7 |
2 | 5 | episode: 6 |
3 | 6 | guests: |
4 | 7 | - jakobgraff |
5 | | -short: A/B Testing |
6 | | -title: 'Product Analytics & A/B Testing: Causality, Metrics, Power Analysis, A/A Tests' |
7 | | -description: 'Master product analytics, A/B testing & power analysis: design stable |
8 | | - metrics, validate randomization with A/A tests, plan sample size to de-risk features.' |
9 | | -intro: How do you design product experiments that truly establish causality and avoid |
10 | | - costly false conclusions? In this episode, Jakob Graff — Director of Data Science |
11 | | - and Data Analytics at diconium, with prior analytics leadership at Inkitt, Babbel, |
12 | | - King and a background in econometrics — walks through practical product analytics |
13 | | - and A/B testing strategies focused on causality and reliable metrics. <br><br> We |
14 | | - cover why randomized experiments mirror clinical trials, how experimentation de-risks |
15 | | - features and builds organizational learning, and a concrete case study on subscription |
16 | | - vs. points revenue metric design. Jakob explains experimentation platform trade-offs |
17 | | - (third-party vs. in-house), traffic splitters, assignment tracking, and why A/A |
18 | | - tests validate system trust. You’ll hear best practices for first tests (two-group |
19 | | - simplicity), metric selection considering noise and seasonality, and how to plan |
20 | | - duration with power analysis and sample-size calculations. The discussion also compares |
21 | | - z/t/nonparametric tests, p-value intuition from A/A comparisons, frequentist vs |
22 | | - Bayesian perspectives, and multi-armed test considerations. <br><br> Listen to learn |
23 | | - practical steps for designing randomized experiments, selecting stable metrics, |
24 | | - planning sample sizes, and interpreting results so your product analytics and A/B |
25 | | - testing produce actionable, causal insights. |
26 | | -topics: |
27 | | -- data science |
28 | | -- practices |
| 8 | +image: images/podcast/s07e06-ab-testing.jpg |
29 | 9 | ids: |
30 | 10 | anchor: AB-Testing---Jakob-Graff-e1eq73v |
31 | 11 | youtube: 0Gqx1LtqRZU |
32 | | -image: images/podcast/s07e06-ab-testing.jpg |
33 | 12 | links: |
34 | 13 | anchor: https://anchor.fm/datatalksclub/episodes/AB-Testing---Jakob-Graff-e1eq73v |
35 | 14 | apple: https://podcasts.apple.com/us/podcast/a-b-testing-jakob-graff/id1541710331?i=1000552243668 |
36 | 15 | spotify: https://open.spotify.com/episode/3LhBOO1UANCGbOwkntZt4j |
37 | 16 | youtube: https://www.youtube.com/watch?v=0Gqx1LtqRZU |
38 | | -season: 7 |
| 17 | + |
| 18 | +description: 'Master product analytics, A/B testing & power analysis: design stable metrics, validate randomization with A/A tests, plan sample size to de-risk features.' |
| 19 | +intro: How do you design product experiments that truly establish causality and avoid costly false conclusions? In this episode, Jakob Graff — Director of Data Science and Data Analytics at diconium, with prior analytics leadership at Inkitt, Babbel, King and a background in econometrics — walks through practical product analytics and A/B testing strategies focused on causality and reliable metrics. <br><br> We cover why randomized experiments mirror clinical trials, how experimentation de-risks features and builds organizational learning, and a concrete case study on subscription vs. points revenue metric design. Jakob explains experimentation platform trade-offs (third-party vs. in-house), traffic splitters, assignment tracking, and why A/A tests validate system trust. You’ll hear best practices for first tests (two-group simplicity), metric selection considering noise and seasonality, and how to plan duration with power analysis and sample-size calculations. The discussion also compares z/t/nonparametric tests, p-value intuition from A/A comparisons, frequentist vs Bayesian perspectives, and multi-armed test considerations. <br><br> Listen to learn practical steps for designing randomized experiments, selecting stable metrics, planning sample sizes, and interpreting results so your product analytics and A/B testing produce actionable, causal insights |
| 20 | +topics: |
| 21 | +- data science |
| 22 | +- practices |
| 23 | +dateadded: 2022-02-27 |
| 24 | + |
| 25 | +duration: PT01H03M37S |
| 26 | + |
| 27 | +quotableClips: |
| 28 | +- name: Podcast Introduction |
| 29 | + startOffset: 0 |
| 30 | + url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=0 |
| 31 | + endOffset: 63 |
| 32 | +- name: Guest Background & Career Transition to Data Science |
| 33 | + startOffset: 63 |
| 34 | + url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=63 |
| 35 | + endOffset: 311 |
| 36 | +- name: 'Econometrics to Product Analytics: Causality Emphasis' |
| 37 | + startOffset: 311 |
| 38 | + url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=311 |
| 39 | + endOffset: 493 |
| 40 | +- name: 'A/B Testing Explained: Clinical Trials Analogy & Randomization' |
| 41 | + startOffset: 493 |
| 42 | + url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=493 |
| 43 | + endOffset: 708 |
| 44 | +- name: 'Experimentation Purpose: Establishing Causality & Controlling Noise' |
| 45 | + startOffset: 708 |
| 46 | + url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=708 |
| 47 | + endOffset: 867 |
| 48 | +- name: 'Case Study: Subscription vs Points — Revenue Metric Design' |
| 49 | + startOffset: 867 |
| 50 | + url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=867 |
| 51 | + endOffset: 1086 |
| 52 | +- name: De-risking Features & Building Organizational Learning with Experiments |
| 53 | + startOffset: 1086 |
| 54 | + url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=1086 |
| 55 | + endOffset: 1434 |
| 56 | +- name: 'Experimentation Platform Choices: Third-Party vs In-House' |
| 57 | + startOffset: 1434 |
| 58 | + url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=1434 |
| 59 | + endOffset: 1484 |
| 60 | +- name: Traffic Splitter Implementation, Assignment Tracking & Monitoring |
| 61 | + startOffset: 1484 |
| 62 | + url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=1484 |
| 63 | + endOffset: 1672 |
| 64 | +- name: 'A/A Testing: Validating Randomization and System Trust' |
| 65 | + startOffset: 1672 |
| 66 | + url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=1672 |
| 67 | + endOffset: 1805 |
| 68 | +- name: 'First Test Best Practices: Two-Group Design & Simplicity' |
| 69 | + startOffset: 1805 |
| 70 | + url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=1805 |
| 71 | + endOffset: 2003 |
| 72 | +- name: 'Metric Selection: Noise, Stability, Seasonality & Business Cycles' |
| 73 | + startOffset: 2003 |
| 74 | + url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=2003 |
| 75 | + endOffset: 2264 |
| 76 | +- name: 'Test Duration & Power Analysis: Sample Size Planning' |
| 77 | + startOffset: 2264 |
| 78 | + url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=2264 |
| 79 | + endOffset: 2423 |
| 80 | +- name: 'Statistical Tests Overview: Z-test, T-test, and Nonparametric Options' |
| 81 | + startOffset: 2423 |
| 82 | + url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=2423 |
| 83 | + endOffset: 2679 |
| 84 | +- name: 'Data Distribution Checks: Histograms, Tails, and Visualization' |
| 85 | + startOffset: 2679 |
| 86 | + url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=2679 |
| 87 | + endOffset: 2864 |
| 88 | +- name: 'P-value Intuition: Explaining Significance via A/A Comparison' |
| 89 | + startOffset: 2864 |
| 90 | + url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=2864 |
| 91 | + endOffset: 3115 |
| 92 | +- name: 'Frequentist vs Bayesian Testing: Credible Intervals, Priors & Costs' |
| 93 | + startOffset: 3115 |
| 94 | + url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=3115 |
| 95 | + endOffset: 3548 |
| 96 | +- name: 'Multi-armed Tests (A/B/C/D): Duration, Power, and Multiple Comparisons' |
| 97 | + startOffset: 3548 |
| 98 | + url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=3548 |
| 99 | + endOffset: 3772 |
| 100 | +- name: Practical Experimentation Tips & Analogies (Pizza Dough) |
| 101 | + startOffset: 3772 |
| 102 | + url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=3772 |
| 103 | + endOffset: 3839 |
| 104 | +- name: Hiring, Resources & Contact Information |
| 105 | + startOffset: 3839 |
| 106 | + url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=3839 |
| 107 | + endOffset: 3880 |
| 108 | +- name: Episode Wrap-up and Key Takeaways |
| 109 | + startOffset: 3880 |
| 110 | + url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=3880 |
| 111 | + endOffset: 3817 |
| 112 | + |
39 | 113 | transcript: |
40 | 114 | - header: Podcast Introduction |
41 | 115 | - header: Guest Background & Career Transition to Data Science |
@@ -1009,91 +1083,4 @@ transcript: |
1009 | 1083 | sec: 3880 |
1010 | 1084 | time: '1:04:40' |
1011 | 1085 | who: Alexey |
1012 | | -dateadded: '2022-02-27' |
1013 | | -duration: PT01H03M37S |
1014 | | -quotableClips: |
1015 | | -- name: Podcast Introduction |
1016 | | - startOffset: 0 |
1017 | | - url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=0 |
1018 | | - endOffset: 63 |
1019 | | -- name: Guest Background & Career Transition to Data Science |
1020 | | - startOffset: 63 |
1021 | | - url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=63 |
1022 | | - endOffset: 311 |
1023 | | -- name: 'Econometrics to Product Analytics: Causality Emphasis' |
1024 | | - startOffset: 311 |
1025 | | - url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=311 |
1026 | | - endOffset: 493 |
1027 | | -- name: 'A/B Testing Explained: Clinical Trials Analogy & Randomization' |
1028 | | - startOffset: 493 |
1029 | | - url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=493 |
1030 | | - endOffset: 708 |
1031 | | -- name: 'Experimentation Purpose: Establishing Causality & Controlling Noise' |
1032 | | - startOffset: 708 |
1033 | | - url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=708 |
1034 | | - endOffset: 867 |
1035 | | -- name: 'Case Study: Subscription vs Points — Revenue Metric Design' |
1036 | | - startOffset: 867 |
1037 | | - url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=867 |
1038 | | - endOffset: 1086 |
1039 | | -- name: De-risking Features & Building Organizational Learning with Experiments |
1040 | | - startOffset: 1086 |
1041 | | - url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=1086 |
1042 | | - endOffset: 1434 |
1043 | | -- name: 'Experimentation Platform Choices: Third-Party vs In-House' |
1044 | | - startOffset: 1434 |
1045 | | - url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=1434 |
1046 | | - endOffset: 1484 |
1047 | | -- name: Traffic Splitter Implementation, Assignment Tracking & Monitoring |
1048 | | - startOffset: 1484 |
1049 | | - url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=1484 |
1050 | | - endOffset: 1672 |
1051 | | -- name: 'A/A Testing: Validating Randomization and System Trust' |
1052 | | - startOffset: 1672 |
1053 | | - url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=1672 |
1054 | | - endOffset: 1805 |
1055 | | -- name: 'First Test Best Practices: Two-Group Design & Simplicity' |
1056 | | - startOffset: 1805 |
1057 | | - url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=1805 |
1058 | | - endOffset: 2003 |
1059 | | -- name: 'Metric Selection: Noise, Stability, Seasonality & Business Cycles' |
1060 | | - startOffset: 2003 |
1061 | | - url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=2003 |
1062 | | - endOffset: 2264 |
1063 | | -- name: 'Test Duration & Power Analysis: Sample Size Planning' |
1064 | | - startOffset: 2264 |
1065 | | - url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=2264 |
1066 | | - endOffset: 2423 |
1067 | | -- name: 'Statistical Tests Overview: Z-test, T-test, and Nonparametric Options' |
1068 | | - startOffset: 2423 |
1069 | | - url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=2423 |
1070 | | - endOffset: 2679 |
1071 | | -- name: 'Data Distribution Checks: Histograms, Tails, and Visualization' |
1072 | | - startOffset: 2679 |
1073 | | - url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=2679 |
1074 | | - endOffset: 2864 |
1075 | | -- name: 'P-value Intuition: Explaining Significance via A/A Comparison' |
1076 | | - startOffset: 2864 |
1077 | | - url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=2864 |
1078 | | - endOffset: 3115 |
1079 | | -- name: 'Frequentist vs Bayesian Testing: Credible Intervals, Priors & Costs' |
1080 | | - startOffset: 3115 |
1081 | | - url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=3115 |
1082 | | - endOffset: 3548 |
1083 | | -- name: 'Multi-armed Tests (A/B/C/D): Duration, Power, and Multiple Comparisons' |
1084 | | - startOffset: 3548 |
1085 | | - url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=3548 |
1086 | | - endOffset: 3772 |
1087 | | -- name: Practical Experimentation Tips & Analogies (Pizza Dough) |
1088 | | - startOffset: 3772 |
1089 | | - url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=3772 |
1090 | | - endOffset: 3839 |
1091 | | -- name: Hiring, Resources & Contact Information |
1092 | | - startOffset: 3839 |
1093 | | - url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=3839 |
1094 | | - endOffset: 3880 |
1095 | | -- name: Episode Wrap-up and Key Takeaways |
1096 | | - startOffset: 3880 |
1097 | | - url: https://www.youtube.com/watch?v=0Gqx1LtqRZU&t=3880 |
1098 | | - endOffset: 3817 |
1099 | 1086 | --- |
0 commit comments