@@ -358,18 +358,13 @@ most `n` documents. A larger value of `query_multiplier` guarantees the return
358358of `n ` documents, but with the risk of including too many less-relevant chunks
359359that may affect the document selection. Default: `-1 ` (any negative value means
360360selecting documents based on all indexed chunks); - `reranker` string, the
361- reranking method to use. Currently supports `CrossEncoderReranker` (default,
362- using sentence-transformers cross-encoder
363- <https://sbert.net/docs/package_reference/cross_encoder/cross_encoder.html > )
364- and `NaiveReranker` (sort chunks by the "distance" between the embedding
365- vectors). Note: If you’re using a good embedding model (eg. a hosted service
366- from OpenAI, or a LLM-based embedding model like Qwen3-Embedding-0.6B
367- <https://huggingface.co/Qwen/Qwen3-Embedding-0.6B >), you may get better results
368- if you use `NaiveReranker` here because a good embedding model may understand
369- texts better than a mediocre reranking model. - `reranker_params` dictionary,
370- similar to `embedding_params` . The options passed to the reranker class
371- constructor. For `CrossEncoderReranker` , these are the options passed to the
372- `CrossEncoder`
361+ reranking method to use. Currently supports `NaiveReranker` (sort chunks by the
362+ "distance" between the embedding vectors) and `CrossEncoderReranker` (using
363+ sentence-transformers cross-encoder
364+ <https://sbert.net/docs/package_reference/cross_encoder/cross_encoder.html > ).
365+ - `reranker_params` dictionary, similar to `embedding_params` . The options
366+ passed to the reranker class constructor. For `CrossEncoderReranker` , these are
367+ the options passed to the `CrossEncoder`
373368<https://sbert.net/docs/package_reference/cross_encoder/cross_encoder.html#id1 >
374369class. For example, if you want to use a non-default model, you can use the
375370following: `json { "reranker_params": { "model_name_or_path": "your_model_here"
0 commit comments