|
1 | | -# aiguild |
2 | | -aiguild |
| 1 | +# AI Guild — Learning Assets (2026) |
| 2 | + |
| 3 | +A curated, builder-first repository of AI Guild resources: roadmaps, workshop decks, reference PDFs, and hands-on notebooks (Colab/Jupyter). The intent is simple: **learn → build → publish proof**. |
| 4 | + |
| 5 | +## What you’ll find here |
| 6 | +- **Roadmaps** to move from AI-curious to AI builder (2026 focus) |
| 7 | +- **Workshop decks** (AI Explorer sessions, CPE-ready material) |
| 8 | +- **RAG foundations + demos** (production-minded patterns, not just toy examples) |
| 9 | +- **Hands-on notebooks** (Python refreshers, sentiment analysis, LangChain + Chroma demos) |
| 10 | + |
| 11 | +--- |
| 12 | + |
| 13 | +## Quick Start (Recommended Learning Order) |
| 14 | +1. **Roadmap (high-level direction)** |
| 15 | + - `DDS_2026_Roadmap_4jan.pdf` |
| 16 | + - `AI_Curious_to_AI_Builder_2026_Roadmap.pdf` |
| 17 | + |
| 18 | +2. **AI Explorer decks (conceptual clarity + business translation)** |
| 19 | + - `AI_Explorer_Professional_CPE_Deck.pdf` |
| 20 | + |
| 21 | +3. **RAG Foundations (core mental model + pipeline)** |
| 22 | + - `RAG foundation 6th Jan 2026.pdf` |
| 23 | + |
| 24 | +4. **RAG Demo (hands-on implementation)** |
| 25 | + - `RAG_Demo_LangChain_Chroma_Colab.ipynb` |
| 26 | + |
| 27 | +5. **Skill boosters (Python + applied notebook)** |
| 28 | + - `DDS_Python_mini_course2026.ipynb` |
| 29 | + - `Copy_of_DDS_Academy_LLM_Sentiment_Analysis.ipynb` |
| 30 | + |
| 31 | +--- |
| 32 | + |
| 33 | +## Repository Contents |
| 34 | + |
| 35 | +| Type | File | Purpose | |
| 36 | +|------|------|---------| |
| 37 | +| PDF | `AI_Curious_to_AI_Builder_2026_Roadmap.pdf` | A practical pathway for turning “AI interest” into shipped demos and portfolio proof. | |
| 38 | +| PDF | `DDS_2026_Roadmap_4jan.pdf` | DDS-wide roadmap and priorities for 2026. | |
| 39 | +| PDF | `AI_Explorer_Professional_CPE_Deck.pdf` | Professional deck for AI Explorer sessions (CPE-friendly). | |
| 40 | +| PDF | `RAG foundation 6th Jan 2026.pdf` | RAG fundamentals: ingest → chunk → embed → retrieve → generate, with quality + trust considerations. | |
| 41 | +| Notebook | `RAG_Demo_LangChain_Chroma_Colab.ipynb` | End-to-end RAG demo using LangChain + Chroma (builder workflow). | |
| 42 | +| Notebook | `DDS_Python_mini_course2026.ipynb` | Python essentials refresher for AI builders (fast-track). | |
| 43 | +| Notebook | `Copy_of_DDS_Academy_LLM_Sentiment_Analysis.ipynb` | Applied LLM sentiment analysis notebook (practical baseline). | |
| 44 | + |
| 45 | +--- |
| 46 | + |
| 47 | +## How to Use |
| 48 | + |
| 49 | +### Option A — Read PDFs in GitHub |
| 50 | +- Click any `*.pdf` file to open it in GitHub’s PDF viewer. |
| 51 | +- For best viewing, download the PDF locally if you need full-screen reading or annotation. |
| 52 | + |
| 53 | +### Option B — Run Notebooks in Google Colab (recommended) |
| 54 | +1. Open the notebook file in GitHub. |
| 55 | +2. Click **“Open in Colab”** (if available) or copy the notebook URL into Colab: |
| 56 | + - In Colab: `File → Open notebook → GitHub` and paste your repo URL. |
| 57 | + |
| 58 | +> Tip: If you want a consistent “Open in Colab” button inside each notebook, add a small header cell with a GitHub/Colab badge. |
| 59 | +
|
| 60 | +### Option C — Run Notebooks Locally (Jupyter) |
| 61 | +**Prerequisites** |
| 62 | +- Python 3.10+ recommended |
| 63 | +- Jupyter installed (`pip install jupyter`) |
| 64 | + |
| 65 | +**Run** |
| 66 | +```bash |
| 67 | +jupyter notebook |
0 commit comments