Skip to content

Commit 1fb54c0

Browse files
authored
Update README.md
1 parent 218c9e2 commit 1fb54c0

File tree

1 file changed

+67
-2
lines changed

1 file changed

+67
-2
lines changed

README.md

Lines changed: 67 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,2 +1,67 @@
1-
# aiguild
2-
aiguild
1+
# AI Guild — Learning Assets (2026)
2+
3+
A curated, builder-first repository of AI Guild resources: roadmaps, workshop decks, reference PDFs, and hands-on notebooks (Colab/Jupyter). The intent is simple: **learn → build → publish proof**.
4+
5+
## What you’ll find here
6+
- **Roadmaps** to move from AI-curious to AI builder (2026 focus)
7+
- **Workshop decks** (AI Explorer sessions, CPE-ready material)
8+
- **RAG foundations + demos** (production-minded patterns, not just toy examples)
9+
- **Hands-on notebooks** (Python refreshers, sentiment analysis, LangChain + Chroma demos)
10+
11+
---
12+
13+
## Quick Start (Recommended Learning Order)
14+
1. **Roadmap (high-level direction)**
15+
- `DDS_2026_Roadmap_4jan.pdf`
16+
- `AI_Curious_to_AI_Builder_2026_Roadmap.pdf`
17+
18+
2. **AI Explorer decks (conceptual clarity + business translation)**
19+
- `AI_Explorer_Professional_CPE_Deck.pdf`
20+
21+
3. **RAG Foundations (core mental model + pipeline)**
22+
- `RAG foundation 6th Jan 2026.pdf`
23+
24+
4. **RAG Demo (hands-on implementation)**
25+
- `RAG_Demo_LangChain_Chroma_Colab.ipynb`
26+
27+
5. **Skill boosters (Python + applied notebook)**
28+
- `DDS_Python_mini_course2026.ipynb`
29+
- `Copy_of_DDS_Academy_LLM_Sentiment_Analysis.ipynb`
30+
31+
---
32+
33+
## Repository Contents
34+
35+
| Type | File | Purpose |
36+
|------|------|---------|
37+
| PDF | `AI_Curious_to_AI_Builder_2026_Roadmap.pdf` | A practical pathway for turning “AI interest” into shipped demos and portfolio proof. |
38+
| PDF | `DDS_2026_Roadmap_4jan.pdf` | DDS-wide roadmap and priorities for 2026. |
39+
| PDF | `AI_Explorer_Professional_CPE_Deck.pdf` | Professional deck for AI Explorer sessions (CPE-friendly). |
40+
| PDF | `RAG foundation 6th Jan 2026.pdf` | RAG fundamentals: ingest → chunk → embed → retrieve → generate, with quality + trust considerations. |
41+
| Notebook | `RAG_Demo_LangChain_Chroma_Colab.ipynb` | End-to-end RAG demo using LangChain + Chroma (builder workflow). |
42+
| Notebook | `DDS_Python_mini_course2026.ipynb` | Python essentials refresher for AI builders (fast-track). |
43+
| Notebook | `Copy_of_DDS_Academy_LLM_Sentiment_Analysis.ipynb` | Applied LLM sentiment analysis notebook (practical baseline). |
44+
45+
---
46+
47+
## How to Use
48+
49+
### Option A — Read PDFs in GitHub
50+
- Click any `*.pdf` file to open it in GitHub’s PDF viewer.
51+
- For best viewing, download the PDF locally if you need full-screen reading or annotation.
52+
53+
### Option B — Run Notebooks in Google Colab (recommended)
54+
1. Open the notebook file in GitHub.
55+
2. Click **“Open in Colab”** (if available) or copy the notebook URL into Colab:
56+
- In Colab: `File → Open notebook → GitHub` and paste your repo URL.
57+
58+
> Tip: If you want a consistent “Open in Colab” button inside each notebook, add a small header cell with a GitHub/Colab badge.
59+
60+
### Option C — Run Notebooks Locally (Jupyter)
61+
**Prerequisites**
62+
- Python 3.10+ recommended
63+
- Jupyter installed (`pip install jupyter`)
64+
65+
**Run**
66+
```bash
67+
jupyter notebook

0 commit comments

Comments
 (0)