Skip to content

Commit 821d5e8

Browse files
authored
[Embedding] Remove the dependency on private header file in EmbeddingVariable. (#927)
Signed-off-by: lixy9474 <[email protected]>
1 parent 8d8e16a commit 821d5e8

13 files changed

+1041
-762
lines changed

tensorflow/core/BUILD

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3026,7 +3026,10 @@ tf_cuda_library(
30263026
"framework/embedding/gpu_hash_table.cu.cc",
30273027
"framework/embedding/gpu_hash_table.h",
30283028
"framework/embedding/embedding_var.cu.cc",
3029-
"framework/embedding/multi_tier_storage.cu.cc"
3029+
"framework/embedding/multi_tier_storage.cu.cc",
3030+
"framework/embedding/embedding_var_ckpt_data.cc",
3031+
"framework/embedding/embedding_var_restore.cc",
3032+
"framework/embedding/ssd_record_descriptor.cc"
30303033
],
30313034
) + select({
30323035
"//tensorflow:windows": [],

tensorflow/core/framework/embedding/embedding_config.h

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -3,6 +3,9 @@
33

44
#include <cmath>
55
#include "tensorflow/core/framework/embedding/config.pb.h"
6+
#include "tensorflow/core/framework/types.pb.h"
7+
#include "tensorflow/core/lib/strings/strcat.h"
8+
#include "tensorflow/core/platform/default/logging.h"
69

710
namespace tensorflow {
811
struct EmbeddingConfig {

tensorflow/core/framework/embedding/embedding_var.h

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,6 @@ limitations under the License.
3737
#include "tensorflow/core/framework/embedding/storage.h"
3838
#include "tensorflow/core/framework/embedding/storage_factory.h"
3939
#include "tensorflow/core/framework/typed_allocator.h"
40-
#include "tensorflow/core/util/tensor_bundle/tensor_bundle.h"
4140

4241
namespace tensorflow {
4342
using CPUDevice = Eigen::ThreadPoolDevice;
Lines changed: 262 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,262 @@
1+
/* Copyright 2022 The DeepRec Authors. All Rights Reserved.
2+
3+
Licensed under the Apache License, Version 2.0 (the "License");
4+
you may not use this file except in compliance with the License.
5+
You may obtain a copy of the License at
6+
7+
http://www.apache.org/licenses/LICENSE-2.0
8+
9+
Unless required by applicable law or agreed to in writing, software
10+
distributed under the License is distributed on an "AS IS" BASIS,
11+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
See the License for the specific language governing permissions and
13+
limitations under the License.
14+
======================================================================*/
15+
#include "tensorflow/core/framework/embedding/embedding_var_ckpt_data.h"
16+
#include "tensorflow/core/framework/embedding/embedding_var_dump_iterator.h"
17+
#include "tensorflow/core/kernels/save_restore_tensor.h"
18+
#include "tensorflow/core/framework/register_types.h"
19+
20+
namespace tensorflow {
21+
namespace embedding {
22+
template<class K, class V>
23+
void EmbeddingVarCkptData<K, V>::Emplace(
24+
K key, ValuePtr<V>* value_ptr,
25+
const EmbeddingConfig& emb_config,
26+
V* default_value, int64 value_offset,
27+
bool is_save_freq,
28+
bool is_save_version,
29+
bool save_unfiltered_features) {
30+
if((int64)value_ptr == ValuePtrStatus::IS_DELETED)
31+
return;
32+
33+
V* primary_val = value_ptr->GetValue(0, 0);
34+
bool is_not_admit =
35+
primary_val == nullptr
36+
&& emb_config.filter_freq != 0;
37+
38+
if (!is_not_admit) {
39+
key_vec_.emplace_back(key);
40+
41+
if (primary_val == nullptr) {
42+
value_ptr_vec_.emplace_back(default_value);
43+
} else if (
44+
(int64)primary_val == ValuePosition::NOT_IN_DRAM) {
45+
value_ptr_vec_.emplace_back((V*)ValuePosition::NOT_IN_DRAM);
46+
} else {
47+
V* val = value_ptr->GetValue(emb_config.emb_index,
48+
value_offset);
49+
value_ptr_vec_.emplace_back(val);
50+
}
51+
52+
53+
if(is_save_version) {
54+
int64 dump_version = value_ptr->GetStep();
55+
version_vec_.emplace_back(dump_version);
56+
}
57+
58+
if(is_save_freq) {
59+
int64 dump_freq = value_ptr->GetFreq();
60+
freq_vec_.emplace_back(dump_freq);
61+
}
62+
} else {
63+
if (!save_unfiltered_features)
64+
return;
65+
66+
key_filter_vec_.emplace_back(key);
67+
68+
if(is_save_version) {
69+
int64 dump_version = value_ptr->GetStep();
70+
version_filter_vec_.emplace_back(dump_version);
71+
}
72+
73+
int64 dump_freq = value_ptr->GetFreq();
74+
freq_filter_vec_.emplace_back(dump_freq);
75+
}
76+
}
77+
#define REGISTER_KERNELS(ktype, vtype) \
78+
template void EmbeddingVarCkptData<ktype, vtype>::Emplace( \
79+
ktype, ValuePtr<vtype>*, const EmbeddingConfig&, \
80+
vtype*, int64, bool, bool, bool);
81+
#define REGISTER_KERNELS_ALL_INDEX(type) \
82+
REGISTER_KERNELS(int32, type) \
83+
REGISTER_KERNELS(int64, type)
84+
TF_CALL_FLOAT_TYPES(REGISTER_KERNELS_ALL_INDEX)
85+
#undef REGISTER_KERNELS_ALL_INDEX
86+
#undef REGISTER_KERNELS
87+
88+
89+
template<class K, class V>
90+
void EmbeddingVarCkptData<K, V>::Emplace(K key, V* value_ptr) {
91+
key_vec_.emplace_back(key);
92+
value_ptr_vec_.emplace_back(value_ptr);
93+
}
94+
#define REGISTER_KERNELS(ktype, vtype) \
95+
template void EmbeddingVarCkptData<ktype, vtype>::Emplace( \
96+
ktype, vtype*);
97+
#define REGISTER_KERNELS_ALL_INDEX(type) \
98+
REGISTER_KERNELS(int32, type) \
99+
REGISTER_KERNELS(int64, type)
100+
TF_CALL_FLOAT_TYPES(REGISTER_KERNELS_ALL_INDEX)
101+
#undef REGISTER_KERNELS_ALL_INDEX
102+
#undef REGISTER_KERNELS
103+
104+
template<class K, class V>
105+
void EmbeddingVarCkptData<K, V>::SetWithPartition(
106+
std::vector<EmbeddingVarCkptData<K, V>>& ev_ckpt_data_parts) {
107+
part_offset_.resize(kSavedPartitionNum + 1);
108+
part_filter_offset_.resize(kSavedPartitionNum + 1);
109+
part_offset_[0] = 0;
110+
part_filter_offset_[0] = 0;
111+
for (int i = 0; i < kSavedPartitionNum; i++) {
112+
part_offset_[i + 1] =
113+
part_offset_[i] + ev_ckpt_data_parts[i].key_vec_.size();
114+
115+
part_filter_offset_[i + 1] =
116+
part_filter_offset_[i] +
117+
ev_ckpt_data_parts[i].key_filter_vec_.size();
118+
119+
for (int64 j = 0; j < ev_ckpt_data_parts[i].key_vec_.size(); j++) {
120+
key_vec_.emplace_back(ev_ckpt_data_parts[i].key_vec_[j]);
121+
}
122+
123+
for (int64 j = 0; j < ev_ckpt_data_parts[i].value_ptr_vec_.size(); j++) {
124+
value_ptr_vec_.emplace_back(ev_ckpt_data_parts[i].value_ptr_vec_[j]);
125+
}
126+
127+
for (int64 j = 0; j < ev_ckpt_data_parts[i].version_vec_.size(); j++) {
128+
version_vec_.emplace_back(ev_ckpt_data_parts[i].version_vec_[j]);
129+
}
130+
131+
for (int64 j = 0; j < ev_ckpt_data_parts[i].freq_vec_.size(); j++) {
132+
freq_vec_.emplace_back(ev_ckpt_data_parts[i].freq_vec_[j]);
133+
}
134+
135+
for (int64 j = 0; j < ev_ckpt_data_parts[i].key_filter_vec_.size(); j++) {
136+
key_filter_vec_.emplace_back(ev_ckpt_data_parts[i].key_filter_vec_[j]);
137+
}
138+
139+
for (int64 j = 0; j < ev_ckpt_data_parts[i].version_filter_vec_.size(); j++) {
140+
version_filter_vec_.emplace_back(ev_ckpt_data_parts[i].version_filter_vec_[j]);
141+
}
142+
143+
for (int64 j = 0; j < ev_ckpt_data_parts[i].freq_filter_vec_.size(); j++) {
144+
freq_filter_vec_.emplace_back(ev_ckpt_data_parts[i].freq_filter_vec_[j]);
145+
}
146+
}
147+
}
148+
149+
#define REGISTER_KERNELS(ktype, vtype) \
150+
template void EmbeddingVarCkptData<ktype, vtype>::SetWithPartition( \
151+
std::vector<EmbeddingVarCkptData<ktype, vtype>>&);
152+
#define REGISTER_KERNELS_ALL_INDEX(type) \
153+
REGISTER_KERNELS(int32, type) \
154+
REGISTER_KERNELS(int64, type)
155+
TF_CALL_FLOAT_TYPES(REGISTER_KERNELS_ALL_INDEX)
156+
#undef REGISTER_KERNELS_ALL_INDEX
157+
#undef REGISTER_KERNELS
158+
159+
template<class K, class V>
160+
Status EmbeddingVarCkptData<K, V>::ExportToCkpt(
161+
const string& tensor_name,
162+
BundleWriter* writer,
163+
int64 value_len,
164+
ValueIterator<V>* value_iter) {
165+
size_t bytes_limit = 8 << 20;
166+
std::unique_ptr<char[]> dump_buffer(new char[bytes_limit]);
167+
168+
EVVectorDataDumpIterator<K> key_dump_iter(key_vec_);
169+
Status s = SaveTensorWithFixedBuffer(
170+
tensor_name + "-keys", writer, dump_buffer.get(),
171+
bytes_limit, &key_dump_iter,
172+
TensorShape({key_vec_.size()}));
173+
if (!s.ok())
174+
return s;
175+
176+
EV2dVectorDataDumpIterator<V> value_dump_iter(
177+
value_ptr_vec_, value_len, value_iter);
178+
s = SaveTensorWithFixedBuffer(
179+
tensor_name + "-values", writer, dump_buffer.get(),
180+
bytes_limit, &value_dump_iter,
181+
TensorShape({value_ptr_vec_.size(), value_len}));
182+
if (!s.ok())
183+
return s;
184+
185+
EVVectorDataDumpIterator<int64> version_dump_iter(version_vec_);
186+
s = SaveTensorWithFixedBuffer(
187+
tensor_name + "-versions", writer, dump_buffer.get(),
188+
bytes_limit, &version_dump_iter,
189+
TensorShape({version_vec_.size()}));
190+
if (!s.ok())
191+
return s;
192+
193+
EVVectorDataDumpIterator<int64> freq_dump_iter(freq_vec_);
194+
s = SaveTensorWithFixedBuffer(
195+
tensor_name + "-freqs", writer, dump_buffer.get(),
196+
bytes_limit, &freq_dump_iter,
197+
TensorShape({freq_vec_.size()}));
198+
if (!s.ok())
199+
return s;
200+
201+
EVVectorDataDumpIterator<K> filtered_key_dump_iter(key_filter_vec_);
202+
s = SaveTensorWithFixedBuffer(
203+
tensor_name + "-keys_filtered", writer, dump_buffer.get(),
204+
bytes_limit, &filtered_key_dump_iter,
205+
TensorShape({key_filter_vec_.size()}));
206+
if (!s.ok())
207+
return s;
208+
209+
EVVectorDataDumpIterator<int64>
210+
filtered_version_dump_iter(version_filter_vec_);
211+
s = SaveTensorWithFixedBuffer(
212+
tensor_name + "-versions_filtered",
213+
writer, dump_buffer.get(),
214+
bytes_limit, &filtered_version_dump_iter,
215+
TensorShape({version_filter_vec_.size()}));
216+
if (!s.ok())
217+
return s;
218+
219+
EVVectorDataDumpIterator<int64>
220+
filtered_freq_dump_iter(freq_filter_vec_);
221+
s = SaveTensorWithFixedBuffer(
222+
tensor_name + "-freqs_filtered",
223+
writer, dump_buffer.get(),
224+
bytes_limit, &filtered_freq_dump_iter,
225+
TensorShape({freq_filter_vec_.size()}));
226+
if (!s.ok())
227+
return s;
228+
229+
EVVectorDataDumpIterator<int32>
230+
part_offset_dump_iter(part_offset_);
231+
s = SaveTensorWithFixedBuffer(
232+
tensor_name + "-partition_offset",
233+
writer, dump_buffer.get(),
234+
bytes_limit, &part_offset_dump_iter,
235+
TensorShape({part_offset_.size()}));
236+
if (!s.ok())
237+
return s;
238+
239+
EVVectorDataDumpIterator<int32>
240+
part_filter_offset_dump_iter(part_filter_offset_);
241+
s = SaveTensorWithFixedBuffer(
242+
tensor_name + "-partition_filter_offset",
243+
writer, dump_buffer.get(),
244+
bytes_limit, &part_filter_offset_dump_iter,
245+
TensorShape({part_filter_offset_.size()}));
246+
if (!s.ok())
247+
return s;
248+
249+
return Status::OK();
250+
}
251+
252+
#define REGISTER_KERNELS(ktype, vtype) \
253+
template Status EmbeddingVarCkptData<ktype, vtype>::ExportToCkpt( \
254+
const string&, BundleWriter*, int64, ValueIterator<vtype>*);
255+
#define REGISTER_KERNELS_ALL_INDEX(type) \
256+
REGISTER_KERNELS(int32, type) \
257+
REGISTER_KERNELS(int64, type)
258+
TF_CALL_FLOAT_TYPES(REGISTER_KERNELS_ALL_INDEX)
259+
#undef REGISTER_KERNELS_ALL_INDEX
260+
#undef REGISTER_KERNELS
261+
}// namespace embedding
262+
}// namespace tensorflow

0 commit comments

Comments
 (0)