@@ -11,61 +11,61 @@ ISBN-13: 9781718503922
1111![ Docker Image CI] ( https://github.com/DeepTrackAI/DeepLearningCrashCourse/actions/workflows/docker-publish.yml/badge.svg )
1212
1313A ready-to-run JupyterLab environment with all notebooks and dependencies baked in.
14- Works on Intel & Apple-Silicon Macs, Linux ×86_64 & ARM64.
14+ Works on Intel & Apple-Silicon Macs, Linux ×86_64 & ARM64; also provides an NVIDIA-CUDA-enabled variant for GPU hosts .
1515
1616---
1717
1818## Prerequisites
1919
20- - [ Docker Desktop ] ( https://www.docker.com/products/docker-desktop ) (macOS, Windows) or Docker Engine (Linux)
21- - (Optional) [ NVIDIA Container Toolkit ] ( https://docs.nvidia .com/datacenter/cloud-native/container-toolkit/latest/ ) on Linux for GPU support
22- - (Optional) VS Code + [ Dev Containers ] ( https://marketplace.visualstudio .com/items?itemName=ms-vscode-remote.remote-containers ) extension
23-
20+ - ** Docker**
21+ - macOS / Windows → [ Docker Desktop ] ( https://www.docker .com/products/docker-desktop )
22+ - Linux → Docker Engine + (optional) [ NVIDIA Container Toolkit ] ( https://docs.nvidia .com/datacenter/cloud-native/container-toolkit/latest/ )
23+ - (Optional) ** VS Code ** + [ Dev Containers extension ] ( https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-containers )
2424
2525---
26- ## Quick Start
2726
28- ### Open Docker Desktop
27+ ## Quick Start
2928
30- ### Pull the Latest Image
29+ ### 1. Pull the image
3130
32- ```
31+ ** CPU-only (multi-arch)**
32+ ``` bash
3333docker pull ghcr.io/deeptrackai/deep-learning-crash-course:latest
3434```
35- Docker will automatically select the correct architecture slice (amd64 or arm64).
3635
36+ ** GPU-enabled (amd64 + CUDA)**
37+ ``` bash
38+ docker pull ghcr.io/deeptrackai/deep-learning-crash-course-gpu:latest
39+ ```
3740
38- ### Startup Docker Image
41+ ### 2. Start JupyterLab
3942
40- ``` docker run --rm -it \
43+ ** CPU-only (multi-arch)**
44+ ``` bash
45+ docker run --rm -it \
4146 -p 8888:8888 \
4247 ghcr.io/deeptrackai/deep-learning-crash-course:latest
4348```
4449
45- ---
46-
47- ### Open in JupyterLab
48-
49- After startup, you’ll see a URL with a token (e.g. http://127.0.0.1:8888/lab?token=… ). Paste it into your browser. You'll see the full set of Crash Course notebooks.
50+ ** GPU-enabled (amd64 + CUDA)**
51+ ``` bash
52+ docker run --rm -it --gpus all \
53+ -p 8888:8888 \
54+ ghcr.io/deeptrackai/deep-learning-crash-course-gpu:latest
55+ ```
56+ After startup, copy the URL with token (e.g., http://127.0.0.1:8888/lab?token=… ) into your browser to access JupyterLab.
5057
51- ---
5258
53- ### Open in VS Code (Dev Containers)
59+ ### Attach in VS Code (Dev Containers)
5460
55- After startup, in VS Code (with Dev Containers installed):
61+ 1 . In VS Code, open Command Palette ( ` Ctrl+Shift+P ` ).
5662
57- 1 . Open the Command Palette.
58-
59- 2 . Run ``` Dev Containers: Attach to Running Container... ``` .
60-
61- 3 . Select your container, a new VS Code window will pop up.
62-
63- 4 . In the new window:
63+ 2 . Run ** Dev Containers: Attach to Running Container...**
6464
65- - Install Python & Jupyter extensions when prompted .
65+ 3 . Select your ** CPU ** or ** GPU ** container from the list. A new VS Code window will pop up .
6666
67- - Open Folder → ` /home/jovyan/work ` (the repo inside the container) .
67+ 4 . Install Python & Jupyter extensions when prompted .
6868
69- - Select Kernel → ` Python Environments... ` → pick the one at ` /opt/conda/bin/python ` (Python 3.11).
69+ 5 . ** Open Folder ** → ` /home/jovyan/work ` and ** Select Kernel ** → ` /opt/conda/bin/python ` (Python 3.11).
7070
71- 5 . Open any ` .ipynb ` and run cells.
71+ 6 . Open any ` .ipynb ` and run cells.
0 commit comments