|
| 1 | +# Eye Drowsiness Detection using ResNet50 |
| 2 | + |
| 3 | +A deep learning project for detecting driver drowsiness by classifying eye states as "awake" or "sleepy" using transfer learning with ResNet50. |
| 4 | + |
| 5 | +## 🎯 Project Overview |
| 6 | + |
| 7 | +This project implements a binary classification model to detect drowsiness in drivers by analyzing eye images. The model achieves **98.5% validation accuracy** using a pre-trained ResNet50 backbone with custom classification layers. |
| 8 | + |
| 9 | +### Key Features |
| 10 | +- **Transfer Learning**: Utilizes pre-trained ResNet50 from ImageNet |
| 11 | +- **Binary Classification**: Classifies eyes as "awake" or "sleepy" |
| 12 | +- **High Accuracy**: Achieves 98.5% validation accuracy |
| 13 | +- **GPU Optimized**: Configured for Google Colab with GPU acceleration |
| 14 | +- **Production Ready**: Saved model ready for deployment |
| 15 | + |
| 16 | +## 📊 Model Performance |
| 17 | + |
| 18 | +| Metric | Training | Validation | |
| 19 | +|--------|----------|------------| |
| 20 | +| **Accuracy** | 97.76% | 98.50% | |
| 21 | +| **Loss** | 0.0600 | 0.0415 | |
| 22 | + |
| 23 | +## 🗂️ Dataset |
| 24 | + |
| 25 | +The project uses the **MRL Eye Dataset** from Kaggle containing: |
| 26 | +- **Training Set**: 50,937 images (80/20 split for train/validation) |
| 27 | +- **Validation Set**: 16,980 images |
| 28 | +- **Classes**: 2 (awake, sleepy) |
| 29 | +- **Image Size**: 224×224 pixels |
| 30 | + |
| 31 | +**Dataset Source**: [MRL Eye Dataset on Kaggle](https://www.kaggle.com/datasets/akashshingha850/mrl-eye-dataset) |
| 32 | + |
| 33 | +## 🏗️ Model Architecture |
| 34 | + |
| 35 | +``` |
| 36 | +ResNet50 (Pre-trained, Frozen) |
| 37 | + ↓ |
| 38 | +GlobalAveragePooling2D |
| 39 | + ↓ |
| 40 | +Dense(128, activation='relu') |
| 41 | + ↓ |
| 42 | +Dropout(0.3) |
| 43 | + ↓ |
| 44 | +Dense(2, activation='softmax') |
| 45 | +``` |
| 46 | + |
| 47 | +### Model Specifications |
| 48 | +- **Base Model**: ResNet50 (ImageNet pre-trained, frozen) |
| 49 | +- **Input Shape**: (224, 224, 3) |
| 50 | +- **Output**: 2 classes (awake/sleepy) |
| 51 | +- **Total Parameters**: ~25M (only ~260K trainable) |
| 52 | +- **Optimizer**: Adam |
| 53 | +- **Loss Function**: Binary Cross-Entropy |
| 54 | + |
| 55 | +## 🚀 Getting Started |
| 56 | + |
| 57 | +### Prerequisites |
| 58 | +- Python 3.7+ |
| 59 | +- TensorFlow 2.x |
| 60 | +- Google Colab (recommended) or local GPU environment |
| 61 | +- Kaggle API credentials |
| 62 | + |
| 63 | +### Installation & Setup |
| 64 | + |
| 65 | +1. **Clone the repository**: |
| 66 | +```bash |
| 67 | +git clone https://github.com/yourusername/eye-drowsiness-detection.git |
| 68 | +cd eye-drowsiness-detection |
| 69 | +``` |
| 70 | + |
| 71 | +2. **Install dependencies**: |
| 72 | +```bash |
| 73 | +pip install tensorflow matplotlib kagglehub |
| 74 | +``` |
| 75 | + |
| 76 | +3. **Run in Google Colab**: |
| 77 | + - Upload `Drowsiness.ipynb` to Google Colab |
| 78 | + - Enable GPU: Runtime → Change runtime type → Hardware accelerator → GPU |
| 79 | + - Run all cells |
| 80 | + |
| 81 | +### Usage |
| 82 | + |
| 83 | +1. **Download Dataset**: |
| 84 | +```python |
| 85 | +import kagglehub |
| 86 | +path = kagglehub.dataset_download("akashshingha850/mrl-eye-dataset") |
| 87 | +``` |
| 88 | + |
| 89 | +2. **Train the Model**: |
| 90 | +```python |
| 91 | +# Configure paths |
| 92 | +train_folder_path = '/path/to/train' |
| 93 | +val_folder_path = '/path/to/val' |
| 94 | + |
| 95 | +# Train model (5 epochs) |
| 96 | +history = model.fit(train_ds, validation_data=val_ds, epochs=5) |
| 97 | +``` |
| 98 | + |
| 99 | +3. **Save the Model**: |
| 100 | +```python |
| 101 | +model.save('/content/saved_model/resnet.keras') |
| 102 | +``` |
| 103 | + |
| 104 | +4. **Load and Use for Prediction**: |
| 105 | +```python |
| 106 | +import tensorflow as tf |
| 107 | +loaded_model = tf.keras.models.load_model('/path/to/resnet.keras') |
| 108 | +prediction = loaded_model.predict(new_image) |
| 109 | +``` |
| 110 | +## 🔬 Training Details |
| 111 | + |
| 112 | +### Hyperparameters |
| 113 | +- **Image Size**: 224×224 pixels |
| 114 | +- **Batch Size**: 16 |
| 115 | +- **Epochs**: 5 |
| 116 | +- **Learning Rate**: Adam default (0.001) |
| 117 | +- **Validation Split**: 20% |
| 118 | +- **Data Augmentation**: None (can be added for improvement) |
| 119 | + |
| 120 | +### Training Results |
| 121 | +``` |
| 122 | +Epoch 1/5: val_accuracy: 0.9753 |
| 123 | +Epoch 2/5: val_accuracy: 0.9756 |
| 124 | +Epoch 3/5: val_accuracy: 0.9761 |
| 125 | +Epoch 4/5: val_accuracy: 0.9806 |
| 126 | +Epoch 5/5: val_accuracy: 0.9850 |
| 127 | +``` |
| 128 | +## 🔧 Customization & Improvements |
| 129 | + |
| 130 | +### Potential Enhancements |
| 131 | +- **Data Augmentation**: Add rotation, brightness, contrast adjustments |
| 132 | +- **Fine-tuning**: Unfreeze top layers of ResNet50 for better accuracy |
| 133 | +- **Real-time Processing**: Optimize for webcam/camera input |
| 134 | +- **Multi-class**: Extend to detect different levels of drowsiness |
| 135 | +- **Ensemble Methods**: Combine multiple models for better performance |
| 136 | + |
| 137 | +### Fine-tuning Example |
| 138 | +```python |
| 139 | +# Unfreeze top layers for fine-tuning |
| 140 | +base_model.trainable = True |
| 141 | +for layer in base_model.layers[:-10]: |
| 142 | + layer.trainable = False |
| 143 | + |
| 144 | +# Use lower learning rate |
| 145 | +model.compile(optimizer=tf.keras.optimizers.Adam(1e-5), |
| 146 | + loss='categorical_crossentropy', |
| 147 | + metrics=['accuracy']) |
| 148 | +``` |
| 149 | + |
| 150 | +## 📈 Performance Analysis |
| 151 | + |
| 152 | +The model shows excellent performance with: |
| 153 | +- **No Overfitting**: Validation accuracy consistently higher than training |
| 154 | +- **Quick Convergence**: Reaches high accuracy within 5 epochs |
| 155 | +- **Stable Training**: Consistent improvement across epochs |
| 156 | + |
| 157 | +## 🤝 Contributing |
| 158 | + |
| 159 | +Contributions are welcome! Please feel free to: |
| 160 | +- Report bugs or issues |
| 161 | +- Suggest new features or improvements |
| 162 | +- Submit pull requests |
| 163 | +- Share your results and modifications |
| 164 | + |
| 165 | +## 🙏 Acknowledgments |
| 166 | + |
| 167 | +- **Dataset**: MRL Eye Dataset by akashshingha850 on Kaggle |
| 168 | +- **Base Model**: ResNet50 from TensorFlow/Keras |
| 169 | +- **Platform**: Google Colab for providing free GPU resources |
0 commit comments