Skip to content

Commit 8094ccb

Browse files
author
Luigi Dello Stritto
committed
formatting fix
1 parent d8a53c0 commit 8094ccb

File tree

1 file changed

+213
-67
lines changed

1 file changed

+213
-67
lines changed

machine_learning_hep/data/data_run3/database_ml_parameters_LcJet_pp.yml

Lines changed: 213 additions & 67 deletions
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,6 @@ LcJet_pp:
5555
O2hflccollbase: [fNumContrib, fCentFT0M, fMultZeqNTracksPV]
5656
extra:
5757
fIsEventReject: 0
58-
5958
collcnt:
6059
trees:
6160
O2collcount: [fReadCounts, fReadCountsWithTVX, fReadCountsWithTVXAndZVertexAndSel8, fReadCountsWithTVXAndZVertexAndSelMC]
@@ -75,7 +74,7 @@ LcJet_pp:
7574
O2hflcpbase: [fPt, fY, fEta, fPhi, fFlagMcMatchGen, fOriginMcGen]
7675
O2lccmcpjeto: [fIndexLCCMCPJETCOS, fIndexHFLCPBASES_0, fJetPt, fJetPhi, fJetEta, fJetNConstituents, fJetR]
7776
O2lccmcpjetmo: [fIndexArrayLCCMCDJETOS_hf, fIndexArrayLCCMCDJETOS_geo, fIndexArrayLCCMCDJETOS_pt]
78-
O2lccmcpjetsso: [fEnergyMother, fPtLeading, fPtSubLeading, fTheta, fNSub2DR, fNSub1, fNSub2]
77+
O2lccmcpjetsso: [fEnergyMother, fPtLeading, fPtSubLeading, fTheta, fNSub2DR, fNSub1, fNSub2, fPairTheta, fPairPt, fPairEnergy]
7978
tags:
8079
isstd: {var: fFlagMcMatchGen, req: [[1], []]}
8180
ismcsignal: {var: fFlagMcMatchGen, req: [[1], []], abs: true}
@@ -101,15 +100,15 @@ LcJet_pp:
101100
O2hflcml: [fMlScores]
102101
O2lccmcdjeto: [fIndexLCCMCDJETCOS, fIndexHFLCBASES_0, fJetPt, fJetPhi, fJetEta, fJetNConstituents, fJetR]
103102
O2lccmcdjetmo: [fIndexArrayLCCMCPJETOS_hf, fIndexArrayLCCMCPJETOS_geo, fIndexArrayLCCMCPJETOS_pt]
104-
O2lccmcdjetsso: [fEnergyMother, fPtLeading, fPtSubLeading, fTheta, fNSub2DR, fNSub1, fNSub2]
103+
O2lccmcdjetsso: [fEnergyMother, fPtLeading, fPtSubLeading, fTheta, fNSub2DR, fNSub1, fNSub2, fPairTheta, fPairPt, fPairEnergy]
105104
tags:
106105
isstd: {var: fFlagMcMatchRec, req: [[1], []]}
107106
ismcsignal: {var: fFlagMcMatchRec, req: [[1], []], abs: true}
108107
ismcbkg: {var: fFlagMcMatchRec, req: [[], [1]], abs: true}
109108
ismcprompt: {var: fOriginMcRec, req: [[0], []]}
110109
ismcfd: {var: fOriginMcRec, req: [[1], []]}
111110
extract_component:
112-
#- { var: fMlScores, newvar: mlPromptScore, component: 1 }
111+
- {var: fMlScores, newvar: mlPromptScore, component: 1}
113112
- {var: fMlScores, newvar: mlBkgScore, component: 0}
114113
filter: "fPt >= 1. and abs(fY) <= 0.8 and abs(fJetEta) < (.9 - (fJetR / 100.))" # TODO: check jet eta cut
115114
# swap: {cand: fCandidateSelFlag, var_swap: fIsCandidateSwapped, vars: [ismcsignal, ismcprompt, icmcfd]}
@@ -129,9 +128,9 @@ LcJet_pp:
129128
O2hflcsel: [fCandidateSelFlag]
130129
O2hflcml: [fMlScores]
131130
O2lccjeto: [fIndexLCCJETCOS, fIndexHFLCBASES_0, fJetPt, fJetPhi, fJetEta, fJetNConstituents, fJetR]
132-
O2lccjetsso: [fIndexLCCJETOS, fEnergyMother, fPtLeading, fPtSubLeading, fTheta, fNSub2DR, fNSub1, fNSub2]
131+
O2lccjetsso: [fIndexLCCJETOS, fEnergyMother, fPtLeading, fPtSubLeading, fTheta, fNSub2DR, fNSub1, fNSub2, fPairTheta, fPairPt, fPairEnergy]
133132
extract_component:
134-
#- { var: fMlScores, newvar: mlPromptScore, component: 1 }
133+
- {var: fMlScores, newvar: mlPromptScore, component: 1}
135134
- {var: fMlScores, newvar: mlBkgScore, component: 0}
136135
filter: "fPt >= 1. and abs(fY) <= 0.8 and abs(fJetEta) < (.9 - (fJetR / 100.))" # TODO: check jet eta cut
137136

@@ -358,46 +357,49 @@ LcJet_pp:
358357
branching_ratio: 6.24e-2 # used
359358

360359
observables:
361-
zg:
362-
bins_gen_fix: [6, -.1, .5]
363-
bins_det_fix: [6, -.1, .5]
364-
label: "#it{z}_{g}"
365-
label_y: "(1/#it{N}_{jet ch}) d#it{N}/d#it{z}_{g}"
366-
nsd:
367-
bins_gen_fix: [10, -.5, 9.5]
368-
bins_det_fix: [10, -.5, 9.5]
369-
label: "#it{n}_{SD}"
370-
label_y: "(1/#it{N}_{jet ch}) d#it{N}/d#it{n}_{SD}"
371-
rg:
372-
bins_gen_fix: [11, -.1, 1.]
373-
bins_det_fix: [11, -.1, 1.]
374-
label: "#it{R}_{g}"
375-
label_y: "(1/#it{N}_{jet ch}) d#it{N}/d#it{R}_{g}"
360+
#zg:
361+
# bins_gen_fix: [6, -.1, .5]
362+
# bins_det_fix: [6, -.1, .5]
363+
# label: "#it{z}_{g}"
364+
# label_y: "(1/#it{N}_{jet ch}) d#it{N}/d#it{z}_{g}"
365+
#nsd:
366+
# bins_gen_fix: [10, -.5, 9.5]
367+
# bins_det_fix: [10, -.5, 9.5]
368+
# label: "#it{n}_{SD}"
369+
# label_y: "(1/#it{N}_{jet ch}) d#it{N}/d#it{n}_{SD}"
370+
#rg:
371+
# bins_gen_fix: [11, -.1, 1.]
372+
# bins_det_fix: [11, -.1, 1.]
373+
# label: "#it{R}_{g}"
374+
# label_y: "(1/#it{N}_{jet ch}) d#it{N}/d#it{R}_{g}"
376375
zpar:
377376
# bins_gen_fix: [10, 0., 1.]
378377
# bins_det_fix: [10, 0., 1.]
379378
bins_gen_var: [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.]
380379
bins_det_var: [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.]
381380
label: "#it{z}_{#parallel}"
382381
label_y: "(1/#it{N}_{jet ch}) d#it{N}/d#it{z}_{#parallel}"
383-
dr:
384-
bins_gen_fix: [10, 0., 1.]
385-
bins_det_fix: [10, 0., 1.]
386-
label: "#Delta#it{r}"
387-
lntheta:
388-
bins_gen_fix: [10, 0., 5.]
389-
bins_det_fix: [10, 0., 5.]
390-
label: "#minusln(#it{#theta})"
391-
arraycols: [3]
392-
lnkt:
393-
bins_gen_fix: [10, -8., 2.]
394-
bins_det_fix: [10, -8., 2.]
395-
label: "ln(#it{k}_{T}/(GeV/#it{c}))"
396-
arraycols: [3]
397-
lntheta-lnkt:
398-
arraycols: [3, 4]
399-
400-
#n_rebin: [4,4,5,5,6,6,7,7,9,9]
382+
#dr:
383+
# bins_gen_fix: [10, 0., 1.]
384+
# bins_det_fix: [10, 0., 1.]
385+
# label: "#Delta#it{r}"
386+
#lntheta:
387+
# bins_gen_fix: [10, 0., 5.]
388+
# bins_det_fix: [10, 0., 5.]
389+
# label: "#minusln(#it{#theta})"
390+
# arraycols: [3]
391+
#lnkt:
392+
# bins_gen_fix: [10, -8., 2.]
393+
# bins_det_fix: [10, -8., 2.]
394+
# label: "ln(#it{k}_{T}/(GeV/#it{c}))"
395+
# arraycols: [3]
396+
#lntheta-lnkt:
397+
# arraycols: [3, 4]
398+
399+
#n_rebin: [2, 2, 2, 2, 2, 2, 4, 5, 5, 5]
400+
n_rebin: [3]
401+
mass_fit_lim: [1.9, 2.62] # histogram range of the invariant mass distribution [GeV/c^2]
402+
bin_width: 0.001 # bin width of the invariant mass histogram
401403
pdf_names:
402404
pdf_sig: "sig"
403405
pdf_bkg: "bkg"
@@ -410,59 +412,204 @@ LcJet_pp:
410412

411413
mass_roofit:
412414
- level: mc
413-
# per_ptjet: true
414-
ptrange: [1., 5.]
415+
ptrange: [0., 2.]
416+
range: [2.18, 2.39]
417+
components:
418+
sig:
419+
fn: "Gaussian::peak(m[1., 10], mean[2.286, 2.283,2.289], sigma_g1[.007,.007,.012])"
420+
wide:
421+
fn: 'Gaussian::wide(m, mean, expr("n*sigma_g1", n[1.,5.], sigma_g1))'
422+
model:
423+
fn: "SUM::sig(f_peak[0.,1.]*peak, wide)"
424+
- level: mc
425+
ptrange: [2., 3.]
426+
range: [2.18, 2.39]
427+
components:
428+
sig:
429+
fn: "Gaussian::peak(m[1., 10], mean[2.286, 2.283,2.289], sigma_g1[.007,.007,.012])"
430+
wide:
431+
fn: 'Gaussian::wide(m, mean, expr("n*sigma_g1", n[1.,5.], sigma_g1))'
432+
model:
433+
fn: "SUM::sig(f_peak[0.,1.]*peak, wide)"
434+
- level: mc
435+
ptrange: [3., 4.]
436+
range: [2.18, 2.39]
437+
components:
438+
sig:
439+
fn: "Gaussian::peak(m[1., 10], mean[2.286, 2.283,2.289], sigma_g1[.007,.007,.012])"
440+
wide:
441+
fn: 'Gaussian::wide(m, mean, expr("n*sigma_g1", n[1.,5.], sigma_g1))'
442+
model:
443+
fn: "SUM::sig(f_peak[0.,1.]*peak, wide)"
444+
- level: mc
445+
ptrange: [4., 5.]
446+
range: [2.18, 2.39]
447+
components:
448+
sig:
449+
fn: "Gaussian::peak(m[1., 10], mean[2.286, 2.283,2.289], sigma_g1[.007,.007,.012])"
450+
wide:
451+
fn: 'Gaussian::wide(m, mean, expr("n*sigma_g1", n[1.,5.], sigma_g1))'
452+
model:
453+
fn: "SUM::sig(f_peak[0.,1.]*peak, wide)"
454+
- level: mc
455+
ptrange: [5., 6.]
456+
range: [2.18, 2.39]
457+
components:
458+
sig:
459+
fn: "Gaussian::peak(m[1., 10], mean[2.286, 2.283,2.289], sigma_g1[.012,.01,.016])"
460+
wide:
461+
fn: 'Gaussian::wide(m, mean, expr("n*sigma_g1", n[1.,5.], sigma_g1))'
462+
model:
463+
fn: "SUM::sig(f_peak[0.,1.]*peak, wide)"
464+
- level: mc
465+
ptrange: [6., 7.]
466+
range: [2.17, 2.40]
467+
components:
468+
sig:
469+
fn: "Gaussian::peak(m[1., 10], mean[2.286, 2.283,2.289], sigma_g1[.012,.01,.016])"
470+
wide:
471+
fn: 'Gaussian::wide(m, mean, expr("n*sigma_g1", n[1.,5.], sigma_g1))'
472+
model:
473+
fn: "SUM::sig(f_peak[0.,1.]*peak, wide)"
474+
- level: mc
475+
ptrange: [7., 8.]
415476
range: [2.10, 2.45]
416477
components:
417478
sig:
418-
fn: "Gaussian::peak(m[1., 5.], mean[2.282,2.29], sigma_g1[.007,.006,.015])"
479+
fn: "Gaussian::peak(m[1., 10], mean[2.2865, 2.283,2.289], sigma_g1[.013,.013,.020])"
419480
wide:
420481
fn: 'Gaussian::wide(m, mean, expr("n*sigma_g1", n[1.,5.], sigma_g1))'
421482
model:
422483
fn: "SUM::sig(f_peak[0.,1.]*peak, wide)"
423484
- level: mc
424-
# per_ptjet: true
425-
ptrange: [5., 30.]
485+
ptrange: [8., 10.]
426486
range: [2.10, 2.45]
427487
components:
428488
sig:
429-
fn: "Gaussian::peak(m[1., 5.], mean[2.282,2.29], sigma_g1[.01,.008,.030])"
489+
fn: "Gaussian::peak(m[1., 10], mean[2.2865, 2.283,2.289], sigma_g1[.013,.013,.020])"
430490
wide:
431491
fn: 'Gaussian::wide(m, mean, expr("n*sigma_g1", n[1.,5.], sigma_g1))'
432492
model:
433493
fn: "SUM::sig(f_peak[0.,1.]*peak, wide)"
434-
- ptrange: [1., 5.]
435-
range: [2.16, 2.40]
436-
fix_params: ["n", "f_peak"]
437-
# per_ptjet: true
494+
- level: mc
495+
ptrange: [10., 12.]
496+
range: [2.10, 2.45]
497+
components:
498+
sig:
499+
fn: "Gaussian::peak(m[1., 10], mean[2.2865, 2.283,2.289], sigma_g1[.013,.013,.020])"
500+
wide:
501+
fn: 'Gaussian::wide(m, mean, expr("n*sigma_g1", n[1.,5.], sigma_g1))'
502+
model:
503+
fn: "SUM::sig(f_peak[0.,1.]*peak, wide)"
504+
- level: mc
505+
ptrange: [12., 16.]
506+
range: [2.10, 2.45]
507+
components:
508+
sig:
509+
fn: "Gaussian::peak(m[1., 10], mean[2.2865, 2.283,2.289], sigma_g1[.020,.020,.029])"
510+
wide:
511+
fn: 'Gaussian::wide(m, mean, expr("n*sigma_g1", n[1.,5.], sigma_g1))'
512+
model:
513+
fn: "SUM::sig(f_peak[0.,1.]*peak, wide)"
514+
- level: mc
515+
ptrange: [16., 30.]
516+
range: [2.10, 2.47]
517+
components:
518+
sig:
519+
fn: "Gaussian::peak(m[1., 10], mean[2.2865, 2.283,2.289], sigma_g1[.020,.020,.029])"
520+
wide:
521+
fn: 'Gaussian::wide(m, mean, expr("n*sigma_g1", n[1.,5.], sigma_g1))'
522+
model:
523+
fn: "SUM::sig(f_peak[0.,1.]*peak, wide)"
524+
- ptrange: [0., 2.]
525+
range: [2.21, 2.36] #2.216, 2.36
526+
fix_params: ['n', 'f_peak']
527+
components:
528+
#sig:
529+
#fn: 'Gaussian::sig(m, mean[2.28,2.29], sigma_g1[.005,.005,.015])'
530+
bkg:
531+
fn: 'Polynomial::bkg(m, {a1[-0.15, -3, 3], a2[0.1, -3., 3]})'
532+
model:
533+
fn: 'SUM::sum(f_sig[0.,1.]*sig, bkg)'
534+
- ptrange: [2., 3.]
535+
range: [2.20, 2.37]
536+
fix_params: ['n', 'f_peak']
537+
components:
538+
#sig:
539+
# fn: 'Gaussian::sig(m, mean[2.28,2.29], sigma_g1[.005,.005,.015])'
540+
bkg:
541+
fn: 'Polynomial::bkg(m, {a1[-0.15, -3, 3], a2[0.1, -3., 3]})'
542+
model:
543+
fn: 'SUM::sum(f_sig[0.,1.]*sig, bkg)'
544+
- ptrange: [3., 4.]
545+
range: [2.18, 2.38]
546+
fix_params: ['n', 'f_peak']
547+
components:
548+
#sig:
549+
#fn: 'Gaussian::sig(m, mean[2.28,2.29], sigma_g1[.005,.005,.015])'
550+
bkg:
551+
fn: 'Polynomial::bkg(m, {a1[-0.15, -3, 3], a2[0.1, -3., 3]})'
552+
model:
553+
fn: 'SUM::sum(f_sig[0., 1.]*sig, bkg)'
554+
- ptrange: [4., 5.]
555+
range: [2.19, 2.38]
556+
fix_params: ['n', 'f_peak']
557+
components:
558+
# sig:
559+
# fn: 'Gaussian::sig(m, mean[2.28,2.29], sigma_g1[.005,.005,.015])'
560+
bkg:
561+
fn: 'Polynomial::bkg(m, {a1[-0.15, -3, 3], a2[0.1, -3., 3]})'
562+
model:
563+
fn: 'SUM::sum(f_sig[0.,1.]*sig, bkg)'
564+
- ptrange: [5., 6.]
565+
range: [2.18, 2.39]
566+
fix_params: ['n', 'f_peak']
438567
components:
439568
# sig:
440569
# fn: 'Gaussian::sig(m, mean[2.28,2.29], sigma_g1[.005,.005,.015])'
441570
bkg:
442-
fn: "Polynomial::bkg(m, {a0[0.2, -3, 3], a1[-0.1, -3, 3], a2[0.1, 0.01, 3]})"
571+
fn: 'Polynomial::bkg(m, {a1[-0.2 , -3, 3], a2[0., -3, 3.]})'
572+
model:
573+
fn: 'SUM::sum(f_sig[0.,1.]*sig, bkg)'
574+
- ptrange: [6., 7.]
575+
range: [2.16, 2.41]
576+
fix_params: ['n', 'f_peak']
577+
components:
578+
# sig:
579+
# fn: 'Gaussian::sig(m, mean[2.28,2.29], sigma_g1[.005,.03])'
580+
bkg:
581+
fn: 'Polynomial::bkg(m, {a1[-0.2 , -3, 3], a2[0., -3, 3.]})'
582+
model:
583+
fn: 'SUM::sum(f_sig[0.,1.]*sig, bkg)'
584+
- ptrange: [7., 8.]
585+
range: [2.16, 2.41]
586+
fix_params: ['n', 'f_peak']
587+
components:
588+
# sig:
589+
# fn: 'Gaussian::sig(m, mean[2.28,2.29], sigma_g1[.005,.03])'
590+
bkg:
591+
fn: 'Polynomial::bkg(m, {a1[-0.2 , -3, 3], a2[0., -3, 3.]})'
443592
model:
444-
fn: "SUM::sum(f_sig[0.,1.]*sig, bkg)"
445-
- ptrange: [5., 8.]
446-
range: [2.1, 2.48]
447-
fix_params: ["n", "f_peak"]
448-
# per_ptjet: true
593+
fn: 'SUM::sum(f_sig[0.,1.]*sig, bkg)'
594+
- ptrange: [8., 10.]
595+
range: [2.1, 2.46]
596+
fix_params: ['n', 'f_peak']
449597
components:
450598
# sig:
451599
# fn: 'Gaussian::sig(m, mean[2.28,2.29], sigma_g1[.005,.03])'
452600
bkg:
453-
fn: "Polynomial::bkg(m, {a0[0.2, -3, 3], a1[0.2 , -3, 3], a2[0.2, -3, 3]})"
601+
fn: 'Polynomial::bkg(m, {a1[-0.2 , -3, 3], a2[-0.2, -3, 3.]})'
454602
model:
455-
fn: "SUM::sum(f_sig[0.,1.]*sig, bkg)"
456-
- range: [2.05, 2.5]
457-
fix_params: ["n", "f_peak"]
458-
# per_ptjet: true
603+
fn: 'SUM::sum(f_sig[0.,1.]*sig, bkg)'
604+
- range: [2.1, 2.47]
605+
fix_params: ['n', 'f_peak']
459606
components:
460607
# sig:
461608
# fn: 'Gaussian::sig(m, mean[2.28,2.29], sigma_g1[.005,.03])'
462609
bkg:
463-
fn: "Polynomial::bkg(m, {a0[0.2, -3, 3], a1[0.2 , -3, 3], a2[0.2, -3, 3]})"
610+
fn: 'Polynomial::bkg(m, {a1[-0.2 , -3, 3], a2[-0.2, -3, 3.]})'
464611
model:
465-
fn: "SUM::sum(f_sig[0.,1.]*sig, bkg)"
612+
fn: 'SUM::sum(f_sig[0.,1.]*sig, bkg)'
466613

467614
#sidesub_per_ptjet: true
468615
sidesub:
@@ -478,20 +625,17 @@ LcJet_pp:
478625
# par_fix: {1: 2.286}
479626
par_constrain: {1: [2.28, 2.29], 2: [.005, .03]}
480627
range: [2.08, 2.48]
481-
mass_fit_lim: [1.9, 2.62] # histogram range of the invariant mass distribution [GeV/c^2]
482-
bin_width: 0.001 # bin width of the invariant mass histogram
483-
n_rebin: 3 # number of mass bins to merge
628+
484629
efficiency:
485630
index_match: fIndexArrayLCCMCPJETOS_hf
486631
#extra_cols: ["mlPromptScore"]
487-
extra_cols: ["mlBkgScore"]
632+
extra_cols: ["mlBkgScore", "mlPromptScore"]
488633
correction_method: run3
489634

490635
#reweight: [[0.86,0.89], [0.89,0.91], [0.90,0.93], [0.92,0.93], [0.93,0.93], [0.94,0.93], [0.95,0.93], [0.95,0.94], [0.95,0.94], [0.95,0.94]] #70-100
491636
#reweight: [[1.03,1.05], [1.02,1.04], [1.02,1.04], [1.02,1.04], [1.01,1.03], [1.01,1.03], [1.01,1.03], [1.01,1.03], [1.00,1.03], [1.01,1.02]] #20-70
492637
#reweight: [[1.15,1.16], [1.11,1.13], [1.10,1.10], [1.08,1.10], [1.07,1.10], [1.06,1.09], [1.06,1.08], [1.05,1.08], [1.05,1.08], [1.05,1.08]] #0-20
493638

494-
495639
unfolding_iterations: 8 # used, maximum iteration
496640
unfolding_iterations_sel: 5 # used, selected iteration # systematics
497641
unfolding_prior_flatness: 0. # ranges from 0. (no flatness) to 1. (flat)
@@ -600,7 +744,9 @@ LcJet_pp:
600744
# Additional cuts applied before mass histogram is filled
601745
use_cuts: True
602746
cuts: ["mlBkgScore < 0.03", "mlBkgScore < 0.04", "mlBkgScore < 0.07", "mlBkgScore < 0.09", "mlBkgScore < 0.11", "mlBkgScore < 0.15", "mlBkgScore < 0.18", "mlBkgScore < 0.25", "mlBkgScore < 0.35", "mlBkgScore < 0.35"] # (sel_an_binmin bins)
747+
#mult_cuts: ["fCentFT0M >= 70 and fCentFT0M <= 100", "fCentFT0M >= 70 and fCentFT0M <= 100", "fCentFT0M >= 70 and fCentFT0M <= 100", "fCentFT0M >= 70 and fCentFT0M <= 100", "fCentFT0M >= 70 and fCentFT0M <= 100", "fCentFT0M >= 70 and fCentFT0M <= 100", "fCentFT0M >= 70 and fCentFT0M <= 100", "fCentFT0M >= 70 and fCentFT0M <= 100", "fCentFT0M >= 70 and fCentFT0M <= 100", "fCentFT0M >= 70 and fCentFT0M <= 100"] # (sel_an_binmin bins)
603748
#mult_cuts: ["fCentFT0M >= 20 and fCentFT0M <= 70", "fCentFT0M >= 20 and fCentFT0M <= 70", "fCentFT0M >= 20 and fCentFT0M <= 70", "fCentFT0M >= 20 and fCentFT0M <= 70", "fCentFT0M >= 20 and fCentFT0M <= 70", "fCentFT0M >= 20 and fCentFT0M <= 70", "fCentFT0M >= 20 and fCentFT0M <= 70", "fCentFT0M >= 20 and fCentFT0M <= 70", "fCentFT0M >= 20 and fCentFT0M <= 70", "fCentFT0M >= 20 and fCentFT0M <= 70"] # (sel_an_binmin bins)
749+
#mult_cuts: ["fCentFT0M >= 0 and fCentFT0M <= 20", "fCentFT0M >= 0 and fCentFT0M <= 20", "fCentFT0M >= 0 and fCentFT0M <= 20", "fCentFT0M >= 0 and fCentFT0M <= 20", "fCentFT0M >= 0 and fCentFT0M <= 20", "fCentFT0M >= 0 and fCentFT0M <= 20", "fCentFT0M >= 0 and fCentFT0M <= 20", "fCentFT0M >= 0 and fCentFT0M <= 20", "fCentFT0M >= 0 and fCentFT0M <= 20", "fCentFT0M >= 0 and fCentFT0M <= 20"] # (sel_an_binmin bins)
604750

605751
systematics: # used in machine_learning_hep/analysis/systematics.py
606752
probvariation:

0 commit comments

Comments
 (0)