@@ -55,7 +55,6 @@ LcJet_pp:
5555 O2hflccollbase : [fNumContrib, fCentFT0M, fMultZeqNTracksPV]
5656 extra :
5757 fIsEventReject : 0
58-
5958 collcnt :
6059 trees :
6160 O2collcount : [fReadCounts, fReadCountsWithTVX, fReadCountsWithTVXAndZVertexAndSel8, fReadCountsWithTVXAndZVertexAndSelMC]
@@ -75,7 +74,7 @@ LcJet_pp:
7574 O2hflcpbase : [fPt, fY, fEta, fPhi, fFlagMcMatchGen, fOriginMcGen]
7675 O2lccmcpjeto : [fIndexLCCMCPJETCOS, fIndexHFLCPBASES_0, fJetPt, fJetPhi, fJetEta, fJetNConstituents, fJetR]
7776 O2lccmcpjetmo : [fIndexArrayLCCMCDJETOS_hf, fIndexArrayLCCMCDJETOS_geo, fIndexArrayLCCMCDJETOS_pt]
78- O2lccmcpjetsso : [fEnergyMother, fPtLeading, fPtSubLeading, fTheta, fNSub2DR, fNSub1, fNSub2]
77+ O2lccmcpjetsso : [fEnergyMother, fPtLeading, fPtSubLeading, fTheta, fNSub2DR, fNSub1, fNSub2, fPairTheta, fPairPt, fPairEnergy ]
7978 tags :
8079 isstd : {var: fFlagMcMatchGen, req: [[1], []]}
8180 ismcsignal : {var: fFlagMcMatchGen, req: [[1], []], abs: true}
@@ -101,15 +100,15 @@ LcJet_pp:
101100 O2hflcml : [fMlScores]
102101 O2lccmcdjeto : [fIndexLCCMCDJETCOS, fIndexHFLCBASES_0, fJetPt, fJetPhi, fJetEta, fJetNConstituents, fJetR]
103102 O2lccmcdjetmo : [fIndexArrayLCCMCPJETOS_hf, fIndexArrayLCCMCPJETOS_geo, fIndexArrayLCCMCPJETOS_pt]
104- O2lccmcdjetsso : [fEnergyMother, fPtLeading, fPtSubLeading, fTheta, fNSub2DR, fNSub1, fNSub2]
103+ O2lccmcdjetsso : [fEnergyMother, fPtLeading, fPtSubLeading, fTheta, fNSub2DR, fNSub1, fNSub2, fPairTheta, fPairPt, fPairEnergy ]
105104 tags :
106105 isstd : {var: fFlagMcMatchRec, req: [[1], []]}
107106 ismcsignal : {var: fFlagMcMatchRec, req: [[1], []], abs: true}
108107 ismcbkg : {var: fFlagMcMatchRec, req: [[], [1]], abs: true}
109108 ismcprompt : {var: fOriginMcRec, req: [[0], []]}
110109 ismcfd : {var: fOriginMcRec, req: [[1], []]}
111110 extract_component :
112- # - { var: fMlScores, newvar: mlPromptScore, component: 1 }
111+ - {var: fMlScores, newvar: mlPromptScore, component: 1}
113112 - {var: fMlScores, newvar: mlBkgScore, component: 0}
114113 filter : " fPt >= 1. and abs(fY) <= 0.8 and abs(fJetEta) < (.9 - (fJetR / 100.))" # TODO: check jet eta cut
115114 # swap: {cand: fCandidateSelFlag, var_swap: fIsCandidateSwapped, vars: [ismcsignal, ismcprompt, icmcfd]}
@@ -129,9 +128,9 @@ LcJet_pp:
129128 O2hflcsel : [fCandidateSelFlag]
130129 O2hflcml : [fMlScores]
131130 O2lccjeto : [fIndexLCCJETCOS, fIndexHFLCBASES_0, fJetPt, fJetPhi, fJetEta, fJetNConstituents, fJetR]
132- O2lccjetsso : [fIndexLCCJETOS, fEnergyMother, fPtLeading, fPtSubLeading, fTheta, fNSub2DR, fNSub1, fNSub2]
131+ O2lccjetsso : [fIndexLCCJETOS, fEnergyMother, fPtLeading, fPtSubLeading, fTheta, fNSub2DR, fNSub1, fNSub2, fPairTheta, fPairPt, fPairEnergy ]
133132 extract_component :
134- # - { var: fMlScores, newvar: mlPromptScore, component: 1 }
133+ - {var: fMlScores, newvar: mlPromptScore, component: 1}
135134 - {var: fMlScores, newvar: mlBkgScore, component: 0}
136135 filter : " fPt >= 1. and abs(fY) <= 0.8 and abs(fJetEta) < (.9 - (fJetR / 100.))" # TODO: check jet eta cut
137136
@@ -358,46 +357,49 @@ LcJet_pp:
358357 branching_ratio : 6.24e-2 # used
359358
360359 observables :
361- zg :
362- bins_gen_fix : [6, -.1, .5]
363- bins_det_fix : [6, -.1, .5]
364- label : " #it{z}_{g}"
365- label_y : " (1/#it{N}_{jet ch}) d#it{N}/d#it{z}_{g}"
366- nsd :
367- bins_gen_fix : [10, -.5, 9.5]
368- bins_det_fix : [10, -.5, 9.5]
369- label : " #it{n}_{SD}"
370- label_y : " (1/#it{N}_{jet ch}) d#it{N}/d#it{n}_{SD}"
371- rg :
372- bins_gen_fix : [11, -.1, 1.]
373- bins_det_fix : [11, -.1, 1.]
374- label : " #it{R}_{g}"
375- label_y : " (1/#it{N}_{jet ch}) d#it{N}/d#it{R}_{g}"
360+ # zg:
361+ # bins_gen_fix: [6, -.1, .5]
362+ # bins_det_fix: [6, -.1, .5]
363+ # label: "#it{z}_{g}"
364+ # label_y: "(1/#it{N}_{jet ch}) d#it{N}/d#it{z}_{g}"
365+ # nsd:
366+ # bins_gen_fix: [10, -.5, 9.5]
367+ # bins_det_fix: [10, -.5, 9.5]
368+ # label: "#it{n}_{SD}"
369+ # label_y: "(1/#it{N}_{jet ch}) d#it{N}/d#it{n}_{SD}"
370+ # rg:
371+ # bins_gen_fix: [11, -.1, 1.]
372+ # bins_det_fix: [11, -.1, 1.]
373+ # label: "#it{R}_{g}"
374+ # label_y: "(1/#it{N}_{jet ch}) d#it{N}/d#it{R}_{g}"
376375 zpar :
377376 # bins_gen_fix: [10, 0., 1.]
378377 # bins_det_fix: [10, 0., 1.]
379378 bins_gen_var : [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.]
380379 bins_det_var : [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.]
381380 label : " #it{z}_{#parallel}"
382381 label_y : " (1/#it{N}_{jet ch}) d#it{N}/d#it{z}_{#parallel}"
383- dr :
384- bins_gen_fix : [10, 0., 1.]
385- bins_det_fix : [10, 0., 1.]
386- label : " #Delta#it{r}"
387- lntheta :
388- bins_gen_fix : [10, 0., 5.]
389- bins_det_fix : [10, 0., 5.]
390- label : " #minusln(#it{#theta})"
391- arraycols : [3]
392- lnkt :
393- bins_gen_fix : [10, -8., 2.]
394- bins_det_fix : [10, -8., 2.]
395- label : " ln(#it{k}_{T}/(GeV/#it{c}))"
396- arraycols : [3]
397- lntheta-lnkt :
398- arraycols : [3, 4]
399-
400- # n_rebin: [4,4,5,5,6,6,7,7,9,9]
382+ # dr:
383+ # bins_gen_fix: [10, 0., 1.]
384+ # bins_det_fix: [10, 0., 1.]
385+ # label: "#Delta#it{r}"
386+ # lntheta:
387+ # bins_gen_fix: [10, 0., 5.]
388+ # bins_det_fix: [10, 0., 5.]
389+ # label: "#minusln(#it{#theta})"
390+ # arraycols: [3]
391+ # lnkt:
392+ # bins_gen_fix: [10, -8., 2.]
393+ # bins_det_fix: [10, -8., 2.]
394+ # label: "ln(#it{k}_{T}/(GeV/#it{c}))"
395+ # arraycols: [3]
396+ # lntheta-lnkt:
397+ # arraycols: [3, 4]
398+
399+ # n_rebin: [2, 2, 2, 2, 2, 2, 4, 5, 5, 5]
400+ n_rebin : [3]
401+ mass_fit_lim : [1.9, 2.62] # histogram range of the invariant mass distribution [GeV/c^2]
402+ bin_width : 0.001 # bin width of the invariant mass histogram
401403 pdf_names :
402404 pdf_sig : " sig"
403405 pdf_bkg : " bkg"
@@ -410,59 +412,204 @@ LcJet_pp:
410412
411413 mass_roofit :
412414 - level : mc
413- # per_ptjet: true
414- ptrange : [1., 5.]
415+ ptrange : [0., 2.]
416+ range : [2.18, 2.39]
417+ components :
418+ sig :
419+ fn : " Gaussian::peak(m[1., 10], mean[2.286, 2.283,2.289], sigma_g1[.007,.007,.012])"
420+ wide :
421+ fn : ' Gaussian::wide(m, mean, expr("n*sigma_g1", n[1.,5.], sigma_g1))'
422+ model :
423+ fn : " SUM::sig(f_peak[0.,1.]*peak, wide)"
424+ - level : mc
425+ ptrange : [2., 3.]
426+ range : [2.18, 2.39]
427+ components :
428+ sig :
429+ fn : " Gaussian::peak(m[1., 10], mean[2.286, 2.283,2.289], sigma_g1[.007,.007,.012])"
430+ wide :
431+ fn : ' Gaussian::wide(m, mean, expr("n*sigma_g1", n[1.,5.], sigma_g1))'
432+ model :
433+ fn : " SUM::sig(f_peak[0.,1.]*peak, wide)"
434+ - level : mc
435+ ptrange : [3., 4.]
436+ range : [2.18, 2.39]
437+ components :
438+ sig :
439+ fn : " Gaussian::peak(m[1., 10], mean[2.286, 2.283,2.289], sigma_g1[.007,.007,.012])"
440+ wide :
441+ fn : ' Gaussian::wide(m, mean, expr("n*sigma_g1", n[1.,5.], sigma_g1))'
442+ model :
443+ fn : " SUM::sig(f_peak[0.,1.]*peak, wide)"
444+ - level : mc
445+ ptrange : [4., 5.]
446+ range : [2.18, 2.39]
447+ components :
448+ sig :
449+ fn : " Gaussian::peak(m[1., 10], mean[2.286, 2.283,2.289], sigma_g1[.007,.007,.012])"
450+ wide :
451+ fn : ' Gaussian::wide(m, mean, expr("n*sigma_g1", n[1.,5.], sigma_g1))'
452+ model :
453+ fn : " SUM::sig(f_peak[0.,1.]*peak, wide)"
454+ - level : mc
455+ ptrange : [5., 6.]
456+ range : [2.18, 2.39]
457+ components :
458+ sig :
459+ fn : " Gaussian::peak(m[1., 10], mean[2.286, 2.283,2.289], sigma_g1[.012,.01,.016])"
460+ wide :
461+ fn : ' Gaussian::wide(m, mean, expr("n*sigma_g1", n[1.,5.], sigma_g1))'
462+ model :
463+ fn : " SUM::sig(f_peak[0.,1.]*peak, wide)"
464+ - level : mc
465+ ptrange : [6., 7.]
466+ range : [2.17, 2.40]
467+ components :
468+ sig :
469+ fn : " Gaussian::peak(m[1., 10], mean[2.286, 2.283,2.289], sigma_g1[.012,.01,.016])"
470+ wide :
471+ fn : ' Gaussian::wide(m, mean, expr("n*sigma_g1", n[1.,5.], sigma_g1))'
472+ model :
473+ fn : " SUM::sig(f_peak[0.,1.]*peak, wide)"
474+ - level : mc
475+ ptrange : [7., 8.]
415476 range : [2.10, 2.45]
416477 components :
417478 sig :
418- fn : " Gaussian::peak(m[1., 5. ], mean[2.282,2.29 ], sigma_g1[.007,.006,.015 ])"
479+ fn : " Gaussian::peak(m[1., 10 ], mean[2.2865, 2.283,2.289 ], sigma_g1[.013,.013,.020 ])"
419480 wide :
420481 fn : ' Gaussian::wide(m, mean, expr("n*sigma_g1", n[1.,5.], sigma_g1))'
421482 model :
422483 fn : " SUM::sig(f_peak[0.,1.]*peak, wide)"
423484 - level : mc
424- # per_ptjet: true
425- ptrange : [5., 30.]
485+ ptrange : [8., 10.]
426486 range : [2.10, 2.45]
427487 components :
428488 sig :
429- fn : " Gaussian::peak(m[1., 5. ], mean[2.282,2.29 ], sigma_g1[.01,.008,.030 ])"
489+ fn : " Gaussian::peak(m[1., 10 ], mean[2.2865, 2.283,2.289 ], sigma_g1[.013,.013,.020 ])"
430490 wide :
431491 fn : ' Gaussian::wide(m, mean, expr("n*sigma_g1", n[1.,5.], sigma_g1))'
432492 model :
433493 fn : " SUM::sig(f_peak[0.,1.]*peak, wide)"
434- - ptrange : [1., 5.]
435- range : [2.16, 2.40]
436- fix_params : ["n", "f_peak"]
437- # per_ptjet: true
494+ - level : mc
495+ ptrange : [10., 12.]
496+ range : [2.10, 2.45]
497+ components :
498+ sig :
499+ fn : " Gaussian::peak(m[1., 10], mean[2.2865, 2.283,2.289], sigma_g1[.013,.013,.020])"
500+ wide :
501+ fn : ' Gaussian::wide(m, mean, expr("n*sigma_g1", n[1.,5.], sigma_g1))'
502+ model :
503+ fn : " SUM::sig(f_peak[0.,1.]*peak, wide)"
504+ - level : mc
505+ ptrange : [12., 16.]
506+ range : [2.10, 2.45]
507+ components :
508+ sig :
509+ fn : " Gaussian::peak(m[1., 10], mean[2.2865, 2.283,2.289], sigma_g1[.020,.020,.029])"
510+ wide :
511+ fn : ' Gaussian::wide(m, mean, expr("n*sigma_g1", n[1.,5.], sigma_g1))'
512+ model :
513+ fn : " SUM::sig(f_peak[0.,1.]*peak, wide)"
514+ - level : mc
515+ ptrange : [16., 30.]
516+ range : [2.10, 2.47]
517+ components :
518+ sig :
519+ fn : " Gaussian::peak(m[1., 10], mean[2.2865, 2.283,2.289], sigma_g1[.020,.020,.029])"
520+ wide :
521+ fn : ' Gaussian::wide(m, mean, expr("n*sigma_g1", n[1.,5.], sigma_g1))'
522+ model :
523+ fn : " SUM::sig(f_peak[0.,1.]*peak, wide)"
524+ - ptrange : [0., 2.]
525+ range : [2.21, 2.36] # 2.216, 2.36
526+ fix_params : ['n', 'f_peak']
527+ components :
528+ # sig:
529+ # fn: 'Gaussian::sig(m, mean[2.28,2.29], sigma_g1[.005,.005,.015])'
530+ bkg :
531+ fn : ' Polynomial::bkg(m, {a1[-0.15, -3, 3], a2[0.1, -3., 3]})'
532+ model :
533+ fn : ' SUM::sum(f_sig[0.,1.]*sig, bkg)'
534+ - ptrange : [2., 3.]
535+ range : [2.20, 2.37]
536+ fix_params : ['n', 'f_peak']
537+ components :
538+ # sig:
539+ # fn: 'Gaussian::sig(m, mean[2.28,2.29], sigma_g1[.005,.005,.015])'
540+ bkg :
541+ fn : ' Polynomial::bkg(m, {a1[-0.15, -3, 3], a2[0.1, -3., 3]})'
542+ model :
543+ fn : ' SUM::sum(f_sig[0.,1.]*sig, bkg)'
544+ - ptrange : [3., 4.]
545+ range : [2.18, 2.38]
546+ fix_params : ['n', 'f_peak']
547+ components :
548+ # sig:
549+ # fn: 'Gaussian::sig(m, mean[2.28,2.29], sigma_g1[.005,.005,.015])'
550+ bkg :
551+ fn : ' Polynomial::bkg(m, {a1[-0.15, -3, 3], a2[0.1, -3., 3]})'
552+ model :
553+ fn : ' SUM::sum(f_sig[0., 1.]*sig, bkg)'
554+ - ptrange : [4., 5.]
555+ range : [2.19, 2.38]
556+ fix_params : ['n', 'f_peak']
557+ components :
558+ # sig:
559+ # fn: 'Gaussian::sig(m, mean[2.28,2.29], sigma_g1[.005,.005,.015])'
560+ bkg :
561+ fn : ' Polynomial::bkg(m, {a1[-0.15, -3, 3], a2[0.1, -3., 3]})'
562+ model :
563+ fn : ' SUM::sum(f_sig[0.,1.]*sig, bkg)'
564+ - ptrange : [5., 6.]
565+ range : [2.18, 2.39]
566+ fix_params : ['n', 'f_peak']
438567 components :
439568 # sig:
440569 # fn: 'Gaussian::sig(m, mean[2.28,2.29], sigma_g1[.005,.005,.015])'
441570 bkg :
442- fn : " Polynomial::bkg(m, {a0[0.2, -3, 3], a1[-0.1, -3, 3], a2[0.1, 0.01, 3]})"
571+ fn : ' Polynomial::bkg(m, {a1[-0.2 , -3, 3], a2[0., -3, 3.]})'
572+ model :
573+ fn : ' SUM::sum(f_sig[0.,1.]*sig, bkg)'
574+ - ptrange : [6., 7.]
575+ range : [2.16, 2.41]
576+ fix_params : ['n', 'f_peak']
577+ components :
578+ # sig:
579+ # fn: 'Gaussian::sig(m, mean[2.28,2.29], sigma_g1[.005,.03])'
580+ bkg :
581+ fn : ' Polynomial::bkg(m, {a1[-0.2 , -3, 3], a2[0., -3, 3.]})'
582+ model :
583+ fn : ' SUM::sum(f_sig[0.,1.]*sig, bkg)'
584+ - ptrange : [7., 8.]
585+ range : [2.16, 2.41]
586+ fix_params : ['n', 'f_peak']
587+ components :
588+ # sig:
589+ # fn: 'Gaussian::sig(m, mean[2.28,2.29], sigma_g1[.005,.03])'
590+ bkg :
591+ fn : ' Polynomial::bkg(m, {a1[-0.2 , -3, 3], a2[0., -3, 3.]})'
443592 model :
444- fn : " SUM::sum(f_sig[0.,1.]*sig, bkg)"
445- - ptrange : [5., 8.]
446- range : [2.1, 2.48]
447- fix_params : ["n", "f_peak"]
448- # per_ptjet: true
593+ fn : ' SUM::sum(f_sig[0.,1.]*sig, bkg)'
594+ - ptrange : [8., 10.]
595+ range : [2.1, 2.46]
596+ fix_params : ['n', 'f_peak']
449597 components :
450598 # sig:
451599 # fn: 'Gaussian::sig(m, mean[2.28,2.29], sigma_g1[.005,.03])'
452600 bkg :
453- fn : " Polynomial::bkg(m, {a0[0.2, -3, 3], a1[0.2 , -3, 3], a2[0.2, -3, 3]})"
601+ fn : ' Polynomial::bkg(m, {a1[- 0.2 , -3, 3], a2[- 0.2, -3, 3. ]})'
454602 model :
455- fn : " SUM::sum(f_sig[0.,1.]*sig, bkg)"
456- - range : [2.05, 2.5]
457- fix_params : ["n", "f_peak"]
458- # per_ptjet: true
603+ fn : ' SUM::sum(f_sig[0.,1.]*sig, bkg)'
604+ - range : [2.1, 2.47]
605+ fix_params : ['n', 'f_peak']
459606 components :
460607 # sig:
461608 # fn: 'Gaussian::sig(m, mean[2.28,2.29], sigma_g1[.005,.03])'
462609 bkg :
463- fn : " Polynomial::bkg(m, {a0[0.2, -3, 3], a1[0.2 , -3, 3], a2[0.2, -3, 3]})"
610+ fn : ' Polynomial::bkg(m, {a1[- 0.2 , -3, 3], a2[- 0.2, -3, 3. ]})'
464611 model :
465- fn : " SUM::sum(f_sig[0.,1.]*sig, bkg)"
612+ fn : ' SUM::sum(f_sig[0.,1.]*sig, bkg)'
466613
467614 # sidesub_per_ptjet: true
468615 sidesub :
@@ -478,20 +625,17 @@ LcJet_pp:
478625 # par_fix: {1: 2.286}
479626 par_constrain : {1: [2.28, 2.29], 2: [.005, .03]}
480627 range : [2.08, 2.48]
481- mass_fit_lim : [1.9, 2.62] # histogram range of the invariant mass distribution [GeV/c^2]
482- bin_width : 0.001 # bin width of the invariant mass histogram
483- n_rebin : 3 # number of mass bins to merge
628+
484629 efficiency :
485630 index_match : fIndexArrayLCCMCPJETOS_hf
486631 # extra_cols: ["mlPromptScore"]
487- extra_cols : ["mlBkgScore"]
632+ extra_cols : ["mlBkgScore", "mlPromptScore" ]
488633 correction_method : run3
489634
490635 # reweight: [[0.86,0.89], [0.89,0.91], [0.90,0.93], [0.92,0.93], [0.93,0.93], [0.94,0.93], [0.95,0.93], [0.95,0.94], [0.95,0.94], [0.95,0.94]] #70-100
491636 # reweight: [[1.03,1.05], [1.02,1.04], [1.02,1.04], [1.02,1.04], [1.01,1.03], [1.01,1.03], [1.01,1.03], [1.01,1.03], [1.00,1.03], [1.01,1.02]] #20-70
492637 # reweight: [[1.15,1.16], [1.11,1.13], [1.10,1.10], [1.08,1.10], [1.07,1.10], [1.06,1.09], [1.06,1.08], [1.05,1.08], [1.05,1.08], [1.05,1.08]] #0-20
493638
494-
495639 unfolding_iterations : 8 # used, maximum iteration
496640 unfolding_iterations_sel : 5 # used, selected iteration # systematics
497641 unfolding_prior_flatness : 0. # ranges from 0. (no flatness) to 1. (flat)
@@ -600,7 +744,9 @@ LcJet_pp:
600744 # Additional cuts applied before mass histogram is filled
601745 use_cuts : True
602746 cuts : ["mlBkgScore < 0.03", "mlBkgScore < 0.04", "mlBkgScore < 0.07", "mlBkgScore < 0.09", "mlBkgScore < 0.11", "mlBkgScore < 0.15", "mlBkgScore < 0.18", "mlBkgScore < 0.25", "mlBkgScore < 0.35", "mlBkgScore < 0.35"] # (sel_an_binmin bins)
747+ # mult_cuts: ["fCentFT0M >= 70 and fCentFT0M <= 100", "fCentFT0M >= 70 and fCentFT0M <= 100", "fCentFT0M >= 70 and fCentFT0M <= 100", "fCentFT0M >= 70 and fCentFT0M <= 100", "fCentFT0M >= 70 and fCentFT0M <= 100", "fCentFT0M >= 70 and fCentFT0M <= 100", "fCentFT0M >= 70 and fCentFT0M <= 100", "fCentFT0M >= 70 and fCentFT0M <= 100", "fCentFT0M >= 70 and fCentFT0M <= 100", "fCentFT0M >= 70 and fCentFT0M <= 100"] # (sel_an_binmin bins)
603748 # mult_cuts: ["fCentFT0M >= 20 and fCentFT0M <= 70", "fCentFT0M >= 20 and fCentFT0M <= 70", "fCentFT0M >= 20 and fCentFT0M <= 70", "fCentFT0M >= 20 and fCentFT0M <= 70", "fCentFT0M >= 20 and fCentFT0M <= 70", "fCentFT0M >= 20 and fCentFT0M <= 70", "fCentFT0M >= 20 and fCentFT0M <= 70", "fCentFT0M >= 20 and fCentFT0M <= 70", "fCentFT0M >= 20 and fCentFT0M <= 70", "fCentFT0M >= 20 and fCentFT0M <= 70"] # (sel_an_binmin bins)
749+ # mult_cuts: ["fCentFT0M >= 0 and fCentFT0M <= 20", "fCentFT0M >= 0 and fCentFT0M <= 20", "fCentFT0M >= 0 and fCentFT0M <= 20", "fCentFT0M >= 0 and fCentFT0M <= 20", "fCentFT0M >= 0 and fCentFT0M <= 20", "fCentFT0M >= 0 and fCentFT0M <= 20", "fCentFT0M >= 0 and fCentFT0M <= 20", "fCentFT0M >= 0 and fCentFT0M <= 20", "fCentFT0M >= 0 and fCentFT0M <= 20", "fCentFT0M >= 0 and fCentFT0M <= 20"] # (sel_an_binmin bins)
604750
605751 systematics : # used in machine_learning_hep/analysis/systematics.py
606752 probvariation :
0 commit comments