Skip to content

Commit c3b0863

Browse files
committed
Update post-3.md
1 parent f0b7c4f commit c3b0863

File tree

1 file changed

+96
-11
lines changed

1 file changed

+96
-11
lines changed

src/content/blog/english/post-3.md

Lines changed: 96 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -1,23 +1,108 @@
11
---
2-
title: "How to build an Application with modern Technology"
2+
title: "Loan Eligibility Predective Analyser"
33
meta_title: ""
4-
description: "this is meta description"
5-
date: 2022-04-04T05:00:00Z
4+
description: "This repository presents a comprehensive predictive analytics solution for determining loan eligibility, leveraging advanced machine learning techniques and data preprocessing methodologies. The project is implemented in Google Colab, utilizing a dataset from Kaggle's Loan Data repository, which encompasses a diverse range of attributes pertinent to creditworthiness assessment."
5+
date: 2024-09-15T05:00:00Z
66
image: "/images/image-placeholder.png"
77
categories: ["Software"]
8-
author: "John Doe"
9-
tags: ["software", "tailwind"]
8+
author: "Sanjeevan S"
9+
tags: ["Machine Learning", "Python3", "Kaggle" , "Pandas" , "Numpy"]
1010
draft: false
1111
---
1212

13-
Nemo vel ad consectetur namut rutrum ex, venenatis sollicitudin urna. Aliquam erat volutpat. Integer eu ipsum sem. Ut bibendum lacus vestibulum maximus suscipit. Quisque vitae nibh iaculis neque blandit euismod.
1413

15-
Lorem ipsum dolor sit amet consectetur adipisicing elit. Nemo vel ad consectetur ut aperiam. Itaque eligendi natus aperiam? Excepturi repellendus consequatur quibusdam optio expedita praesentium est adipisci dolorem ut eius!
1614

17-
## Creative Design
15+
---
16+
17+
## Loan Eligibility Predictive Analytics: A Comprehensive Solution
18+
19+
**This project offers an advanced machine learning solution for determining loan eligibility, leveraging powerful data preprocessing techniques and predictive algorithms.** Implemented in **Google Colab**, it utilizes the **Loan Data repository** from Kaggle, comprising diverse features critical for creditworthiness assessment.
20+
21+
### 🔧 **Technical Overview**
22+
23+
- **Programming Language**: Python 3.x
24+
- **Libraries and Frameworks**:
25+
- **Pandas**: Data manipulation and analysis
26+
- **NumPy**: Numerical computations
27+
- **Scikit-learn**: Machine learning model development and evaluation
28+
- **Matplotlib & Seaborn**: Data visualization tools
29+
30+
---
31+
32+
### 📊 **Dataset Overview**
33+
34+
The dataset consists of **615 observations** and **13 features**, including:
35+
36+
- **Loan ID**
37+
- **Gender**
38+
- **Married**
39+
- **Dependents**
40+
- **Education**
41+
- **Self-Employed**
42+
- **Applicant Income**
43+
- **Coapplicant Income**
44+
- **Loan Amount**
45+
- **Loan Amount Term**
46+
- **Credit History**
47+
- **Property Area**
48+
- **Loan Status**
49+
50+
---
51+
52+
### ⚙️ **Methodology**
53+
54+
#### **Data Preprocessing**:
55+
- **Imputation**: Handling missing values with advanced techniques
56+
- **Encoding**: One-hot encoding for categorical variables
57+
- **Scaling/Normalization**: Applying transformations to numerical features
58+
59+
#### **Feature Engineering**:
60+
- **Feature Extraction**: Identifying key attributes impacting loan eligibility
61+
- **Interaction Terms**: Creating relationships between variables for better predictions
62+
63+
---
64+
65+
### 🚀 **Model Development**
66+
67+
We evaluated multiple machine learning algorithms:
68+
69+
- **Logistic Regression**
70+
- **Decision Trees**
71+
- **Random Forest**
72+
- **Gradient Boosting**
73+
74+
Each model was trained and fine-tuned to optimize performance.
75+
76+
---
77+
78+
### 📈 **Model Evaluation**
79+
80+
Models were assessed using key metrics:
81+
82+
- **Accuracy, Precision, Recall, F1 Score, ROC-AUC**
83+
- **Confusion Matrix**: To understand classification results
84+
- **ROC Curves**: For visualizing true positive and false positive rates
85+
86+
---
87+
88+
### 📂 **Repository Structure**
89+
90+
- **Loan_Eligibility_Predictive_Analyser.ipynb**: The main notebook containing the code and documentation.
91+
- **data**: Folder containing the Loan Data dataset.
92+
- **utils**: Module for helper functions used in preprocessing and visualization.
93+
94+
---
95+
96+
### 🛠 **Resources**
97+
98+
- GitHub Profile: [**I-SANJEEVAN**](https://github.com/I-SANJEEVAN)
99+
- Repository Link: [**Loan Eligibility Predictor**](https://github.com/I-SANJEEVAN/Loan_eligibility_predective_analyser/tree/main)
100+
- Try it on Colab: [**Google Colab Notebook**](https://colab.research.google.com/drive/1CHJh7jBemyhLNENAd2qEMgctKT6h_4mV?usp=sharing)
101+
102+
---
18103

19-
Nam ut rutrum ex, venenatis sollicitudin urna. Aliquam erat volutpat. Integer eu ipsum sem. Ut bibendum lacus vestibulum maximus suscipit. Quisque vitae nibh iaculis neque blandit euismod.
104+
This project offers a **powerful tool** for financial institutions to automate loan eligibility assessments, providing insightful predictions backed by machine learning!
20105

21-
> Lorem ipsum dolor sit amet consectetur adipisicing elit. Nemo vel ad consectetur ut aperiam. Itaque eligendi natus aperiam? Excepturi repellendus consequatur quibusdam optio expedita praesentium est adipisci dolorem ut eius!
106+
---
22107

23-
Lorem ipsum dolor sit amet consectetur adipisicing elit. Nemo vel ad consectetur ut aperiam. Itaque eligendi natus aperiam? Excepturi repellendus consequatur quibusdam optio expedita praesentium est adipisci dolorem ut eius!
108+
This version improves readability and flow, making it more engaging for a blog audience while preserving the technical depth.

0 commit comments

Comments
 (0)