|
1 | 1 | ---
|
2 |
| -title: "How to build an Application with modern Technology" |
| 2 | +title: "Loan Eligibility Predective Analyser" |
3 | 3 | meta_title: ""
|
4 |
| -description: "this is meta description" |
5 |
| -date: 2022-04-04T05:00:00Z |
| 4 | +description: "This repository presents a comprehensive predictive analytics solution for determining loan eligibility, leveraging advanced machine learning techniques and data preprocessing methodologies. The project is implemented in Google Colab, utilizing a dataset from Kaggle's Loan Data repository, which encompasses a diverse range of attributes pertinent to creditworthiness assessment." |
| 5 | +date: 2024-09-15T05:00:00Z |
6 | 6 | image: "/images/image-placeholder.png"
|
7 | 7 | categories: ["Software"]
|
8 |
| -author: "John Doe" |
9 |
| -tags: ["software", "tailwind"] |
| 8 | +author: "Sanjeevan S" |
| 9 | +tags: ["Machine Learning", "Python3", "Kaggle" , "Pandas" , "Numpy"] |
10 | 10 | draft: false
|
11 | 11 | ---
|
12 | 12 |
|
13 |
| -Nemo vel ad consectetur namut rutrum ex, venenatis sollicitudin urna. Aliquam erat volutpat. Integer eu ipsum sem. Ut bibendum lacus vestibulum maximus suscipit. Quisque vitae nibh iaculis neque blandit euismod. |
14 | 13 |
|
15 |
| -Lorem ipsum dolor sit amet consectetur adipisicing elit. Nemo vel ad consectetur ut aperiam. Itaque eligendi natus aperiam? Excepturi repellendus consequatur quibusdam optio expedita praesentium est adipisci dolorem ut eius! |
16 | 14 |
|
17 |
| -## Creative Design |
| 15 | +--- |
| 16 | + |
| 17 | +## Loan Eligibility Predictive Analytics: A Comprehensive Solution |
| 18 | + |
| 19 | +**This project offers an advanced machine learning solution for determining loan eligibility, leveraging powerful data preprocessing techniques and predictive algorithms.** Implemented in **Google Colab**, it utilizes the **Loan Data repository** from Kaggle, comprising diverse features critical for creditworthiness assessment. |
| 20 | + |
| 21 | +### 🔧 **Technical Overview** |
| 22 | + |
| 23 | +- **Programming Language**: Python 3.x |
| 24 | +- **Libraries and Frameworks**: |
| 25 | + - **Pandas**: Data manipulation and analysis |
| 26 | + - **NumPy**: Numerical computations |
| 27 | + - **Scikit-learn**: Machine learning model development and evaluation |
| 28 | + - **Matplotlib & Seaborn**: Data visualization tools |
| 29 | + |
| 30 | +--- |
| 31 | + |
| 32 | +### 📊 **Dataset Overview** |
| 33 | + |
| 34 | +The dataset consists of **615 observations** and **13 features**, including: |
| 35 | + |
| 36 | +- **Loan ID** |
| 37 | +- **Gender** |
| 38 | +- **Married** |
| 39 | +- **Dependents** |
| 40 | +- **Education** |
| 41 | +- **Self-Employed** |
| 42 | +- **Applicant Income** |
| 43 | +- **Coapplicant Income** |
| 44 | +- **Loan Amount** |
| 45 | +- **Loan Amount Term** |
| 46 | +- **Credit History** |
| 47 | +- **Property Area** |
| 48 | +- **Loan Status** |
| 49 | + |
| 50 | +--- |
| 51 | + |
| 52 | +### ⚙️ **Methodology** |
| 53 | + |
| 54 | +#### **Data Preprocessing**: |
| 55 | +- **Imputation**: Handling missing values with advanced techniques |
| 56 | +- **Encoding**: One-hot encoding for categorical variables |
| 57 | +- **Scaling/Normalization**: Applying transformations to numerical features |
| 58 | + |
| 59 | +#### **Feature Engineering**: |
| 60 | +- **Feature Extraction**: Identifying key attributes impacting loan eligibility |
| 61 | +- **Interaction Terms**: Creating relationships between variables for better predictions |
| 62 | + |
| 63 | +--- |
| 64 | + |
| 65 | +### 🚀 **Model Development** |
| 66 | + |
| 67 | +We evaluated multiple machine learning algorithms: |
| 68 | + |
| 69 | +- **Logistic Regression** |
| 70 | +- **Decision Trees** |
| 71 | +- **Random Forest** |
| 72 | +- **Gradient Boosting** |
| 73 | + |
| 74 | +Each model was trained and fine-tuned to optimize performance. |
| 75 | + |
| 76 | +--- |
| 77 | + |
| 78 | +### 📈 **Model Evaluation** |
| 79 | + |
| 80 | +Models were assessed using key metrics: |
| 81 | + |
| 82 | +- **Accuracy, Precision, Recall, F1 Score, ROC-AUC** |
| 83 | +- **Confusion Matrix**: To understand classification results |
| 84 | +- **ROC Curves**: For visualizing true positive and false positive rates |
| 85 | + |
| 86 | +--- |
| 87 | + |
| 88 | +### 📂 **Repository Structure** |
| 89 | + |
| 90 | +- **Loan_Eligibility_Predictive_Analyser.ipynb**: The main notebook containing the code and documentation. |
| 91 | +- **data**: Folder containing the Loan Data dataset. |
| 92 | +- **utils**: Module for helper functions used in preprocessing and visualization. |
| 93 | + |
| 94 | +--- |
| 95 | + |
| 96 | +### 🛠 **Resources** |
| 97 | + |
| 98 | +- GitHub Profile: [**I-SANJEEVAN**](https://github.com/I-SANJEEVAN) |
| 99 | +- Repository Link: [**Loan Eligibility Predictor**](https://github.com/I-SANJEEVAN/Loan_eligibility_predective_analyser/tree/main) |
| 100 | +- Try it on Colab: [**Google Colab Notebook**](https://colab.research.google.com/drive/1CHJh7jBemyhLNENAd2qEMgctKT6h_4mV?usp=sharing) |
| 101 | + |
| 102 | +--- |
18 | 103 |
|
19 |
| -Nam ut rutrum ex, venenatis sollicitudin urna. Aliquam erat volutpat. Integer eu ipsum sem. Ut bibendum lacus vestibulum maximus suscipit. Quisque vitae nibh iaculis neque blandit euismod. |
| 104 | +This project offers a **powerful tool** for financial institutions to automate loan eligibility assessments, providing insightful predictions backed by machine learning! |
20 | 105 |
|
21 |
| -> Lorem ipsum dolor sit amet consectetur adipisicing elit. Nemo vel ad consectetur ut aperiam. Itaque eligendi natus aperiam? Excepturi repellendus consequatur quibusdam optio expedita praesentium est adipisci dolorem ut eius! |
| 106 | +--- |
22 | 107 |
|
23 |
| -Lorem ipsum dolor sit amet consectetur adipisicing elit. Nemo vel ad consectetur ut aperiam. Itaque eligendi natus aperiam? Excepturi repellendus consequatur quibusdam optio expedita praesentium est adipisci dolorem ut eius! |
| 108 | +This version improves readability and flow, making it more engaging for a blog audience while preserving the technical depth. |
0 commit comments