@@ -345,6 +345,10 @@ def solve(a, b):
345
345
LinAlgError
346
346
If `a` is singular or not square.
347
347
348
+ See Also
349
+ --------
350
+ scipy.linalg.solve : Similar function in SciPy.
351
+
348
352
Notes
349
353
-----
350
354
@@ -502,6 +506,10 @@ def inv(a):
502
506
LinAlgError
503
507
If `a` is not square or inversion fails.
504
508
509
+ See Also
510
+ --------
511
+ scipy.linalg.inv : Similar function in SciPy.
512
+
505
513
Notes
506
514
-----
507
515
@@ -700,6 +708,14 @@ def cholesky(a):
700
708
If the decomposition fails, for example, if `a` is not
701
709
positive-definite.
702
710
711
+ See Also
712
+ --------
713
+ scipy.linalg.cholesky : Similar function in SciPy.
714
+ scipy.linalg.cholesky_banded : Cholesky decompose a banded Hermitian
715
+ positive-definite matrix.
716
+ scipy.linalg.cho_factor : Cholesky decomposition of a matrix, to use in
717
+ `scipy.linalg.cho_solve`.
718
+
703
719
Notes
704
720
-----
705
721
@@ -812,6 +828,11 @@ def qr(a, mode='reduced'):
812
828
LinAlgError
813
829
If factoring fails.
814
830
831
+ See Also
832
+ --------
833
+ scipy.linalg.qr : Similar function in SciPy.
834
+ scipy.linalg.rq : Compute RQ decomposition of a matrix.
835
+
815
836
Notes
816
837
-----
817
838
This is an interface to the LAPACK routines ``dgeqrf``, ``zgeqrf``,
@@ -1004,6 +1025,7 @@ def eigvals(a):
1004
1025
(conjugate symmetric) arrays.
1005
1026
eigh : eigenvalues and eigenvectors of real symmetric or complex
1006
1027
Hermitian (conjugate symmetric) arrays.
1028
+ scipy.linalg.eigvals : Similar function in SciPy.
1007
1029
1008
1030
Notes
1009
1031
-----
@@ -1105,6 +1127,7 @@ def eigvalsh(a, UPLO='L'):
1105
1127
eigvals : eigenvalues of general real or complex arrays.
1106
1128
eig : eigenvalues and right eigenvectors of general real or complex
1107
1129
arrays.
1130
+ scipy.linalg.eigvalsh : Similar function in SciPy.
1108
1131
1109
1132
Notes
1110
1133
-----
@@ -1203,12 +1226,12 @@ def eig(a):
1203
1226
See Also
1204
1227
--------
1205
1228
eigvals : eigenvalues of a non-symmetric array.
1206
-
1207
1229
eigh : eigenvalues and eigenvectors of a real symmetric or complex
1208
1230
Hermitian (conjugate symmetric) array.
1209
-
1210
1231
eigvalsh : eigenvalues of a real symmetric or complex Hermitian
1211
1232
(conjugate symmetric) array.
1233
+ scipy.linalg.eig : Similar function in SciPy (but also solves the
1234
+ generalized eigenvalue problem).
1212
1235
1213
1236
Notes
1214
1237
-----
@@ -1355,6 +1378,8 @@ def eigh(a, UPLO='L'):
1355
1378
(conjugate symmetric) arrays.
1356
1379
eig : eigenvalues and right eigenvectors for non-symmetric arrays.
1357
1380
eigvals : eigenvalues of non-symmetric arrays.
1381
+ scipy.linalg.eigh : Similar function in SciPy (but also solves the
1382
+ generalized eigenvalue problem).
1358
1383
1359
1384
Notes
1360
1385
-----
@@ -1506,6 +1531,11 @@ def svd(a, full_matrices=True, compute_uv=True, hermitian=False):
1506
1531
LinAlgError
1507
1532
If SVD computation does not converge.
1508
1533
1534
+ See Also
1535
+ --------
1536
+ scipy.linalg.svd : Similar function in SciPy.
1537
+ scipy.linalg.svdvals : Compute singular values of a matrix.
1538
+
1509
1539
Notes
1510
1540
-----
1511
1541
@@ -1917,6 +1947,13 @@ def pinv(a, rcond=1e-15, hermitian=False):
1917
1947
LinAlgError
1918
1948
If the SVD computation does not converge.
1919
1949
1950
+ See Also
1951
+ --------
1952
+ scipy.linalg.pinv : Similar function in SciPy.
1953
+ scipy.linalg.pinv2 : Similar function in SciPy (SVD-based).
1954
+ scipy.linalg.pinvh : Compute the (Moore-Penrose) pseudo-inverse of a
1955
+ Hermitian matrix.
1956
+
1920
1957
Notes
1921
1958
-----
1922
1959
The pseudo-inverse of a matrix A, denoted :math:`A^+`, is
@@ -2079,6 +2116,7 @@ def det(a):
2079
2116
--------
2080
2117
slogdet : Another way to represent the determinant, more suitable
2081
2118
for large matrices where underflow/overflow may occur.
2119
+ scipy.linalg.det : Similar function in SciPy.
2082
2120
2083
2121
Notes
2084
2122
-----
@@ -2179,6 +2217,10 @@ def lstsq(a, b, rcond="warn"):
2179
2217
LinAlgError
2180
2218
If computation does not converge.
2181
2219
2220
+ See Also
2221
+ --------
2222
+ scipy.linalg.lstsq : Similar function in SciPy.
2223
+
2182
2224
Notes
2183
2225
-----
2184
2226
If `b` is a matrix, then all array results are returned as matrices.
@@ -2353,6 +2395,10 @@ def norm(x, ord=None, axis=None, keepdims=False):
2353
2395
n : float or ndarray
2354
2396
Norm of the matrix or vector(s).
2355
2397
2398
+ See Also
2399
+ --------
2400
+ scipy.linalg.norm : Similar function in SciPy.
2401
+
2356
2402
Notes
2357
2403
-----
2358
2404
For values of ``ord < 1``, the result is, strictly speaking, not a
0 commit comments