@@ -146,7 +146,7 @@ cdef class Generator:
146
146
147
147
Container for the BitGenerators.
148
148
149
- `` Generator` ` exposes a number of methods for generating random
149
+ `Generator` exposes a number of methods for generating random
150
150
numbers drawn from a variety of probability distributions. In addition to
151
151
the distribution-specific arguments, each method takes a keyword argument
152
152
`size` that defaults to ``None``. If `size` is ``None``, then a single
@@ -159,7 +159,7 @@ cdef class Generator:
159
159
160
160
**No Compatibility Guarantee**
161
161
162
- `` Generator` ` does not provide a version compatibility guarantee. In
162
+ `Generator` does not provide a version compatibility guarantee. In
163
163
particular, as better algorithms evolve the bit stream may change.
164
164
165
165
Parameters
@@ -171,8 +171,8 @@ cdef class Generator:
171
171
-----
172
172
The Python stdlib module `random` contains pseudo-random number generator
173
173
with a number of methods that are similar to the ones available in
174
- `` Generator` `. It uses Mersenne Twister, and this bit generator can
175
- be accessed using `` MT19937`` . `` Generator` `, besides being
174
+ `Generator`. It uses Mersenne Twister, and this bit generator can
175
+ be accessed using `MT19937`. `Generator`, besides being
176
176
NumPy-aware, has the advantage that it provides a much larger number
177
177
of probability distributions to choose from.
178
178
@@ -5025,11 +5025,11 @@ def default_rng(seed=None):
5025
5025
5026
5026
Examples
5027
5027
--------
5028
- `` default_rng` ` is the recommended constructor for the random number class
5029
- `` Generator` `. Here are several ways we can construct a random
5030
- number generator using `` default_rng`` and the `` Generator` ` class.
5028
+ `default_rng` is the recommended constructor for the random number class
5029
+ `Generator`. Here are several ways we can construct a random
5030
+ number generator using `default_rng` and the `Generator` class.
5031
5031
5032
- Here we use `` default_rng` ` to generate a random float:
5032
+ Here we use `default_rng` to generate a random float:
5033
5033
5034
5034
>>> import numpy as np
5035
5035
>>> rng = np.random.default_rng(12345)
@@ -5041,7 +5041,7 @@ def default_rng(seed=None):
5041
5041
>>> type(rfloat)
5042
5042
<class 'float'>
5043
5043
5044
- Here we use `` default_rng` ` to generate 3 random integers between 0
5044
+ Here we use `default_rng` to generate 3 random integers between 0
5045
5045
(inclusive) and 10 (exclusive):
5046
5046
5047
5047
>>> import numpy as np
0 commit comments