|
| 1 | +from typing import List, Optional |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import pandas as pd |
| 5 | +from rdflib import RDF, Literal |
| 6 | +from rdflib.resource import Resource |
| 7 | + |
| 8 | +from bitstomach.signals import Comparison, Signal, Trend |
| 9 | +from utils.namespace import PSDO, SLOWMO |
| 10 | + |
| 11 | + |
| 12 | +class Approach(Signal): |
| 13 | + signal_type = PSDO.approach_content |
| 14 | + |
| 15 | + @staticmethod |
| 16 | + def detect(perf_data: pd.DataFrame) -> Optional[List[Resource]]: |
| 17 | + if perf_data.empty: |
| 18 | + raise ValueError |
| 19 | + |
| 20 | + trend_signals = Trend.detect(perf_data) |
| 21 | + if ( |
| 22 | + not trend_signals |
| 23 | + or not trend_signals[0][RDF.type : PSDO.positive_performance_trend_content] |
| 24 | + ): |
| 25 | + return [] |
| 26 | + |
| 27 | + negative_comparison_signals = [ |
| 28 | + s |
| 29 | + for s in Comparison.detect(perf_data) |
| 30 | + if s[RDF.type : PSDO.negative_performance_gap_content] |
| 31 | + ] |
| 32 | + |
| 33 | + negative_prior_month_comparisons = [ |
| 34 | + s |
| 35 | + for s in Comparison.detect(perf_data.iloc[:-1], tiered_comparators=False) |
| 36 | + if s[RDF.type : PSDO.negative_performance_gap_content] |
| 37 | + ] |
| 38 | + |
| 39 | + approach_signals = [] |
| 40 | + |
| 41 | + for comparison_signal in negative_comparison_signals: |
| 42 | + previous_comparison_signal = next( |
| 43 | + ( |
| 44 | + comparison |
| 45 | + for comparison in negative_prior_month_comparisons |
| 46 | + if ( |
| 47 | + Comparison.comparator_type(comparison) |
| 48 | + == Comparison.comparator_type(comparison_signal) |
| 49 | + ) |
| 50 | + ), |
| 51 | + None, |
| 52 | + ) |
| 53 | + |
| 54 | + if not previous_comparison_signal: |
| 55 | + continue |
| 56 | + |
| 57 | + streak_length = Approach._detect( |
| 58 | + perf_data, comparison_signal.value(SLOWMO.RegardingComparator) |
| 59 | + ) |
| 60 | + |
| 61 | + mi = Approach._resource( |
| 62 | + trend_signals[0], |
| 63 | + comparison_signal, |
| 64 | + previous_comparison_signal, |
| 65 | + streak_length, |
| 66 | + ) |
| 67 | + |
| 68 | + approach_signals.append(mi) |
| 69 | + return approach_signals |
| 70 | + |
| 71 | + @classmethod |
| 72 | + def _resource( |
| 73 | + cls, |
| 74 | + trend_signal: Resource, |
| 75 | + comparison_signal: Resource, |
| 76 | + previous_comparison_signal: Resource, |
| 77 | + streak_length: int, |
| 78 | + ) -> Resource: |
| 79 | + # create and type the Achievmente |
| 80 | + mi = super()._resource() |
| 81 | + mi.add(RDF.type, Comparison.signal_type) |
| 82 | + mi.add(RDF.type, Trend.signal_type) |
| 83 | + |
| 84 | + # set signal properties |
| 85 | + mi[SLOWMO.PerformanceTrendSlope] = trend_signal.value( |
| 86 | + SLOWMO.PerformanceTrendSlope |
| 87 | + ) |
| 88 | + mi[SLOWMO.PerformanceGapSize] = comparison_signal.value( |
| 89 | + SLOWMO.PerformanceGapSize |
| 90 | + ) |
| 91 | + mi[SLOWMO.PriorPerformanceGapSize] = previous_comparison_signal.value( |
| 92 | + SLOWMO.PerformanceGapSize |
| 93 | + ) |
| 94 | + mi[SLOWMO.StreakLength] = Literal(streak_length) |
| 95 | + |
| 96 | + # add comparator (Achievments are a Comparison) |
| 97 | + comparator = comparison_signal.value(SLOWMO.RegardingComparator) |
| 98 | + |
| 99 | + mi[SLOWMO.RegardingComparator] = comparator |
| 100 | + |
| 101 | + g = mi.graph |
| 102 | + g += comparison_signal.graph.triples((comparator.identifier, None, None)) |
| 103 | + |
| 104 | + return mi |
| 105 | + |
| 106 | + @classmethod |
| 107 | + def disposition(cls, mi: Resource) -> List[Resource]: |
| 108 | + dispos = super().disposition(mi) |
| 109 | + dispos += Comparison.disposition(mi) |
| 110 | + dispos += Trend.disposition(mi) |
| 111 | + |
| 112 | + return dispos |
| 113 | + |
| 114 | + @classmethod |
| 115 | + def moderators(cls, motivating_informations: List[Resource]) -> List[dict]: |
| 116 | + """ |
| 117 | + extracts approach moderators (trend_slope, gap_size, comparator_type and prior_gap_size) from a suplied list of motivating information |
| 118 | + """ |
| 119 | + mods = [] |
| 120 | + |
| 121 | + for signal in super().select(motivating_informations): |
| 122 | + motivating_info_dict = super().moderators(signal) |
| 123 | + |
| 124 | + motivating_info_dict["gap_size"] = round( |
| 125 | + abs(signal.value(SLOWMO.PerformanceGapSize).value), 4 |
| 126 | + ) |
| 127 | + motivating_info_dict["comparator_type"] = signal.value( |
| 128 | + SLOWMO.RegardingComparator / RDF.type |
| 129 | + ).identifier |
| 130 | + motivating_info_dict["trend_size"] = round( |
| 131 | + abs(signal.value(SLOWMO.PerformanceTrendSlope).value * 2), 4 |
| 132 | + ) |
| 133 | + motivating_info_dict["prior_gap_size"] = round( |
| 134 | + abs(signal.value(SLOWMO.PriorPerformanceGapSize).value), 4 |
| 135 | + ) |
| 136 | + motivating_info_dict["streak_length"] = ( |
| 137 | + signal.value(SLOWMO.StreakLength).value / 12 |
| 138 | + ) |
| 139 | + |
| 140 | + mods.append(motivating_info_dict) |
| 141 | + |
| 142 | + return mods |
| 143 | + |
| 144 | + @staticmethod |
| 145 | + def _detect(perf_data: pd.DataFrame, comparator: Resource) -> float: |
| 146 | + """ |
| 147 | + calculates the number of consecutive negative gaps prior to this months negative gap. |
| 148 | + """ |
| 149 | + comp_cols = { |
| 150 | + PSDO["peer_average_comparator"]: "peer_average_comparator", |
| 151 | + PSDO["peer_75th_percentile_benchmark"]: "peer_75th_percentile_benchmark", |
| 152 | + PSDO["peer_90th_percentile_benchmark"]: "peer_90th_percentile_benchmark", |
| 153 | + PSDO["goal_comparator_content"]: "goal_comparator_content", |
| 154 | + } |
| 155 | + |
| 156 | + comparator_id = comparator.value(RDF.type).identifier |
| 157 | + |
| 158 | + gaps = perf_data["passed_rate"] - perf_data[comp_cols[comparator_id]] / 100 |
| 159 | + |
| 160 | + # find the number of consecutive negative gaps |
| 161 | + diff_reversed = gaps.values[:-1][::-1] |
| 162 | + end_negative_gaps_index = np.argmax(diff_reversed >= 0) |
| 163 | + if end_negative_gaps_index == 0: |
| 164 | + consecutive_negative_gaps = len(diff_reversed) |
| 165 | + else: |
| 166 | + consecutive_negative_gaps = end_negative_gaps_index |
| 167 | + |
| 168 | + return consecutive_negative_gaps |
0 commit comments