|
| 1 | +<!DOCTYPE html> |
| 2 | +<html> |
| 3 | +<head> |
| 4 | + <meta name="viewport" content="width=device-width, initial-scale=1"> |
| 5 | + <title>IMU Path Visualizer - User Guide</title> |
| 6 | + <style> |
| 7 | + body { |
| 8 | + background-color: #1a1a1a; |
| 9 | + color: #e0e0e0; |
| 10 | + font-family: 'Courier New', monospace; |
| 11 | + margin: 0; |
| 12 | + padding: 20px; |
| 13 | + font-size: 12px; |
| 14 | + line-height: 1.6; |
| 15 | + } |
| 16 | + |
| 17 | + .container { |
| 18 | + max-width: 900px; |
| 19 | + margin: 0 auto; |
| 20 | + background-color: #2a2a2a; |
| 21 | + padding: 30px; |
| 22 | + border-radius: 8px; |
| 23 | + } |
| 24 | + |
| 25 | + h1 { |
| 26 | + color: #4CAF50; |
| 27 | + border-bottom: 2px solid #4CAF50; |
| 28 | + padding-bottom: 10px; |
| 29 | + margin-top: 0; |
| 30 | + } |
| 31 | + |
| 32 | + h2 { |
| 33 | + color: #64B5F6; |
| 34 | + margin-top: 30px; |
| 35 | + border-bottom: 1px solid #444; |
| 36 | + padding-bottom: 5px; |
| 37 | + } |
| 38 | + |
| 39 | + h3 { |
| 40 | + color: #FFB74D; |
| 41 | + margin-top: 20px; |
| 42 | + } |
| 43 | + |
| 44 | + code { |
| 45 | + background-color: #1a1a1a; |
| 46 | + padding: 2px 6px; |
| 47 | + border-radius: 3px; |
| 48 | + color: #4CAF50; |
| 49 | + } |
| 50 | + |
| 51 | + .feature-box { |
| 52 | + background-color: #333; |
| 53 | + padding: 15px; |
| 54 | + margin: 15px 0; |
| 55 | + border-left: 3px solid #4CAF50; |
| 56 | + border-radius: 4px; |
| 57 | + } |
| 58 | + |
| 59 | + .control-desc { |
| 60 | + background-color: #1a1a1a; |
| 61 | + padding: 10px; |
| 62 | + margin: 10px 0; |
| 63 | + border-radius: 4px; |
| 64 | + } |
| 65 | + |
| 66 | + .control-name { |
| 67 | + color: #FFB74D; |
| 68 | + font-weight: bold; |
| 69 | + } |
| 70 | + |
| 71 | + ul, ol { |
| 72 | + margin: 10px 0; |
| 73 | + } |
| 74 | + |
| 75 | + li { |
| 76 | + margin: 5px 0; |
| 77 | + } |
| 78 | + |
| 79 | + .back-link { |
| 80 | + display: inline-block; |
| 81 | + margin-top: 30px; |
| 82 | + padding: 8px 16px; |
| 83 | + background-color: #4CAF50; |
| 84 | + color: white; |
| 85 | + text-decoration: none; |
| 86 | + border-radius: 4px; |
| 87 | + } |
| 88 | + |
| 89 | + .back-link:hover { |
| 90 | + background-color: #66BB6A; |
| 91 | + } |
| 92 | + |
| 93 | + .tip { |
| 94 | + background-color: #1a3a4a; |
| 95 | + border-left: 3px solid #64B5F6; |
| 96 | + padding: 10px; |
| 97 | + margin: 15px 0; |
| 98 | + } |
| 99 | + |
| 100 | + .warning { |
| 101 | + background-color: #4a2a1a; |
| 102 | + border-left: 3px solid #FFB74D; |
| 103 | + padding: 10px; |
| 104 | + margin: 15px 0; |
| 105 | + } |
| 106 | + </style> |
| 107 | +</head> |
| 108 | +<body> |
| 109 | + <div class="container"> |
| 110 | + <h1>📊 IMU Path Visualizer - User Guide</h1> |
| 111 | + |
| 112 | + <h2>Overview</h2> |
| 113 | + <p> |
| 114 | + The IMU Path Visualizer helps you analyze your car's recorded driving |
| 115 | + sessions. It displays your driving path, detects laps automatically, |
| 116 | + segments the course into sections, and ranks your performance in each |
| 117 | + segment. |
| 118 | + </p> |
| 119 | + |
| 120 | + <h2>Basic Controls</h2> |
| 121 | + |
| 122 | + <div class="control-desc"> |
| 123 | + <span class="control-name">Play/Pause Button</span><br> |
| 124 | + Start or stop automatic playback through your recorded path. |
| 125 | + </div> |
| 126 | + |
| 127 | + <div class="control-desc"> |
| 128 | + <span class="control-name">Time Slider</span><br> |
| 129 | + Drag to navigate to any point in your recording. You can also use |
| 130 | + keyboard arrow keys (← →) for frame-by-frame navigation. |
| 131 | + </div> |
| 132 | + |
| 133 | + <div class="control-desc"> |
| 134 | + <span class="control-name">Laps Selector</span><br> |
| 135 | + Choose how many laps to use for computing the mean reference course. |
| 136 | + The mean course is shown in cyan and represents the average path across |
| 137 | + the selected number of laps. |
| 138 | + </div> |
| 139 | + |
| 140 | + <div class="control-desc"> |
| 141 | + <span class="control-name">Segments Selector</span><br> |
| 142 | + Choose the algorithm for dividing the course into segments: |
| 143 | + <ul> |
| 144 | + <li><b>Threshold</b>: Segments based on curvature thresholds</li> |
| 145 | + <li><b>Extrema</b>: Segments at curvature peaks/valleys</li> |
| 146 | + <li><b>Gradient</b>: Segments where curvature changes rapidly</li> |
| 147 | + <li><b>Hybrid</b>: Combines multiple methods (recommended)</li> |
| 148 | + </ul> |
| 149 | + </div> |
| 150 | + |
| 151 | + <div class="control-desc"> |
| 152 | + <span class="control-name">Path/Mean Checkboxes</span><br> |
| 153 | + Toggle visibility of the driven path (your actual recording) and mean |
| 154 | + course (reference line). |
| 155 | + </div> |
| 156 | + |
| 157 | + <h2>Segment Performance Analysis</h2> |
| 158 | + |
| 159 | + <div class="feature-box"> |
| 160 | + <h3>What are Segments?</h3> |
| 161 | + <p> |
| 162 | + Segments are geometric sections of your course (straights, turns, |
| 163 | + chicanes). The visualizer automatically divides your course into |
| 164 | + segments based on curvature analysis. |
| 165 | + </p> |
| 166 | + </div> |
| 167 | + |
| 168 | + <div class="feature-box"> |
| 169 | + <h3>How Performance Ranking Works</h3> |
| 170 | + <p> |
| 171 | + For each segment, the visualizer compares how you drove it across |
| 172 | + different laps. It ranks each instance from 0% (worst) to 100% (best) |
| 173 | + based on the selected field and aggregation method. |
| 174 | + </p> |
| 175 | + <p> |
| 176 | + <b>Example:</b> If you drove segment 3 in three laps with times of |
| 177 | + 2.1s, 1.8s, and 2.0s, the rankings would be:<br> |
| 178 | + Lap 1: 0% (slowest), Lap 2: 100% (fastest), Lap 3: 50% (middle) |
| 179 | + </p> |
| 180 | + </div> |
| 181 | + |
| 182 | + <h2>Advanced: Custom Segment Statistics</h2> |
| 183 | + |
| 184 | + <p> |
| 185 | + When viewing Tub data (recorded driving sessions), you can analyze |
| 186 | + segment performance using any numeric field from your recordings. |
| 187 | + </p> |
| 188 | + |
| 189 | + <div class="control-desc"> |
| 190 | + <span class="control-name">Field Selector</span><br> |
| 191 | + Choose which data field to analyze: |
| 192 | + <ul> |
| 193 | + <li><code>time</code> - Time spent in segment (built-in)</li> |
| 194 | + <li><code>distance</code> - Distance traveled (built-in)</li> |
| 195 | + <li><code>car/speed</code> - Vehicle speed data</li> |
| 196 | + <li><code>imu/gyr</code> - Gyroscope data (smoothness)</li> |
| 197 | + <li><code>imu/acl</code> - Accelerometer data</li> |
| 198 | + <li>... any numeric field from your tub</li> |
| 199 | + </ul> |
| 200 | + </div> |
| 201 | + |
| 202 | + <div class="control-desc"> |
| 203 | + <span class="control-name">Method Selector</span><br> |
| 204 | + Choose how to aggregate the field values within each segment: |
| 205 | + <ul> |
| 206 | + <li><code>delta</code> - Last minus first (for time, distance)</li> |
| 207 | + <li><code>mean_abs</code> - Average of absolute values</li> |
| 208 | + <li><code>sum_abs</code> - Sum of absolute values</li> |
| 209 | + <li><code>max</code> - Maximum value in segment</li> |
| 210 | + <li><code>min</code> - Minimum value in segment</li> |
| 211 | + <li><code>norm</code> - Euclidean magnitude (for vectors)</li> |
| 212 | + </ul> |
| 213 | + </div> |
| 214 | + |
| 215 | + <div class="control-desc"> |
| 216 | + <span class="control-name">Dimension Selector</span><br> |
| 217 | + For vector fields (like IMU data), choose which component to analyze: |
| 218 | + <ul> |
| 219 | + <li><code>X</code> - First component</li> |
| 220 | + <li><code>Y</code> - Second component</li> |
| 221 | + <li><code>Z</code> - Third component</li> |
| 222 | + <li><code>Magnitude</code> - Combined length of vector</li> |
| 223 | + </ul> |
| 224 | + </div> |
| 225 | + |
| 226 | + <div class="tip"> |
| 227 | + <b>💡 Tip:</b> Use <code>imu/gyr</code> Z-axis with <code>sum_abs</code> |
| 228 | + to measure driving smoothness. Lower values = smoother steering. |
| 229 | + </div> |
| 230 | + |
| 231 | + <h2>Understanding the Display</h2> |
| 232 | + |
| 233 | + <div class="feature-box"> |
| 234 | + <h3>Current Position Panel</h3> |
| 235 | + <p> |
| 236 | + Shows real-time information about the current position on the path: |
| 237 | + </p> |
| 238 | + <ul> |
| 239 | + <li><b>Date/Time:</b> Recording timestamp</li> |
| 240 | + <li><b>Index:</b> Data point number</li> |
| 241 | + <li><b>Lap:</b> Current lap number (0-based)</li> |
| 242 | + <li><b>Segment:</b> Current segment ID</li> |
| 243 | + <li><b>Speed:</b> Vehicle speed in m/s</li> |
| 244 | + <li><b>IMU Yaw:</b> Heading angle from IMU</li> |
| 245 | + <li><b>X/Y:</b> Position coordinates in meters</li> |
| 246 | + <li><b>Total Dist:</b> Cumulative distance traveled</li> |
| 247 | + <li><b>Lap Dist:</b> Distance within current lap</li> |
| 248 | + <li><b>Seg Rank:</b> Performance ranking (0-100%)</li> |
| 249 | + </ul> |
| 250 | + </div> |
| 251 | + |
| 252 | + <div class="feature-box"> |
| 253 | + <h3>Path Visualization</h3> |
| 254 | + <ul> |
| 255 | + <li><b>Color-coded points:</b> Each point shows segment ranking by |
| 256 | + color (red = worst, green = best)</li> |
| 257 | + <li><b>Segment boundaries:</b> White lines perpendicular to the |
| 258 | + course</li> |
| 259 | + <li><b>Mean course:</b> Cyan line showing average path</li> |
| 260 | + <li><b>Current position marker:</b> Red circle with white border</li> |
| 261 | + </ul> |
| 262 | + </div> |
| 263 | + |
| 264 | + <h2>Training with Segment Performance</h2> |
| 265 | + |
| 266 | + <div class="feature-box"> |
| 267 | + <p> |
| 268 | + After analyzing your data, you can use segment-based training to |
| 269 | + create a model that learns from the best-driven instance of each |
| 270 | + segment, rather than just the best complete lap. |
| 271 | + </p> |
| 272 | + <ol> |
| 273 | + <li>Record multiple laps with varied performance</li> |
| 274 | + <li>Run: <code>donkey segment --tub ./data/</code></li> |
| 275 | + <li>Enable in config: <code>SEGMENT_PCT_MODE = True</code></li> |
| 276 | + <li>Train: <code>python manage.py train --tub ./data/</code></li> |
| 277 | + </ol> |
| 278 | + <p> |
| 279 | + The model will learn a "synthetic perfect lap" combining the best |
| 280 | + driving from each segment across all your laps. |
| 281 | + </p> |
| 282 | + </div> |
| 283 | + |
| 284 | + <div class="warning"> |
| 285 | + <b>⚠️ Note:</b> Segment-based training requires segmentation data |
| 286 | + to be computed first using <code>donkey segment</code> command. |
| 287 | + </div> |
| 288 | + |
| 289 | + <h2>Keyboard Shortcuts</h2> |
| 290 | + <ul> |
| 291 | + <li><b>←</b> (Left Arrow): Go to previous frame</li> |
| 292 | + <li><b>→</b> (Right Arrow): Go to next frame</li> |
| 293 | + <li><b>Space:</b> Play/Pause (when plot is focused)</li> |
| 294 | + </ul> |
| 295 | + |
| 296 | + <h2>Configuration</h2> |
| 297 | + |
| 298 | + <div class="tip"> |
| 299 | + <b>💡 Advanced:</b> You can configure which fields are available |
| 300 | + for segment analysis by editing <code>FIELD_AGGREGATIONS</code> |
| 301 | + in your <code>config.py</code> file. Pass <code>--config |
| 302 | + /path/to/config.py</code> when starting the visualizer. |
| 303 | + </div> |
| 304 | + |
| 305 | + <a href="/imupath" class="back-link">← Back to Visualizer</a> |
| 306 | + </div> |
| 307 | +</body> |
| 308 | +</html> |
0 commit comments