You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: arxiv.json
+35Lines changed: 35 additions & 0 deletions
Original file line number
Diff line number
Diff line change
@@ -36979,5 +36979,40 @@
36979
36979
"pub_date": "2024-12-13",
36980
36980
"summary": "The sheer scale of data required to train modern large language models (LLMs) poses significant risks, as models are likely to gain knowledge of sensitive topics such as bio-security, as well the ability to replicate copyrighted works. Methods designed to remove such knowledge must do so from all prompt directions, in a multi-lingual capacity and without degrading general model performance. To this end, we introduce the targeted angular reversal (TARS) method of knowledge removal from LLMs. The TARS method firstly leverages the LLM in combination with a detailed prompt to aggregate information about a selected concept in the internal representation space of the LLM. It then refines this approximate concept vector to trigger the concept token with high probability, by perturbing the approximate concept vector with noise and transforming it into token scores with the language model head. The feedforward weight vectors in the LLM which operate directly on the internal representation space, and have the highest cosine similarity with this targeting vector, are then replaced by a reversed targeting vector, thus limiting the ability of the concept to propagate through the model. The modularity of the TARS method allows for a sequential removal of concepts from Llama 3.1 8B, such as the famous literary detective Sherlock Holmes, and the planet Saturn. It is demonstrated that the probability of triggering target concepts can be reduced to 0.00 with as few as 1 TARS edit, whilst simultaneously removing the knowledge bi-directionally. Moreover, knowledge is shown to be removed across all languages despite only being targeted in English. Importantly, TARS has minimal impact on the general model capabilities, as after removing 5 diverse concepts in a modular fashion, there is minimal KL divergence in the next token probabilities of the LLM on large corpora of Wikipedia text (median of 0.002).",
"title": "No More Tuning: Prioritized Multi-Task Learning with Lagrangian\n Differential Multiplier Methods",
36985
+
"url": "http://arxiv.org/abs/2412.12092v1",
36986
+
"pub_date": "2024-12-16",
36987
+
"summary": "Given the ubiquity of multi-task in practical systems, Multi-Task Learning (MTL) has found widespread application across diverse domains. In real-world scenarios, these tasks often have different priorities. For instance, In web search, relevance is often prioritized over other metrics, such as click-through rates or user engagement. Existing frameworks pay insufficient attention to the prioritization among different tasks, which typically adjust task-specific loss function weights to differentiate task priorities. However, this approach encounters challenges as the number of tasks grows, leading to exponential increases in hyper-parameter tuning complexity. Furthermore, the simultaneous optimization of multiple objectives can negatively impact the performance of high-priority tasks due to interference from lower-priority tasks. In this paper, we introduce a novel multi-task learning framework employing Lagrangian Differential Multiplier Methods for step-wise multi-task optimization. It is designed to boost the performance of high-priority tasks without interference from other tasks. Its primary advantage lies in its ability to automatically optimize multiple objectives without requiring balancing hyper-parameters for different tasks, thereby eliminating the need for manual tuning. Additionally, we provide theoretical analysis demonstrating that our method ensures optimization guarantees, enhancing the reliability of the process. We demonstrate its effectiveness through experiments on multiple public datasets and its application in Taobao search, a large-scale industrial search ranking system, resulting in significant improvements across various business metrics.",
"title": "RetroLLM: Empowering Large Language Models to Retrieve Fine-grained\n Evidence within Generation",
36992
+
"url": "http://arxiv.org/abs/2412.11919v1",
36993
+
"pub_date": "2024-12-16",
36994
+
"summary": "Large language models (LLMs) exhibit remarkable generative capabilities but often suffer from hallucinations. Retrieval-augmented generation (RAG) offers an effective solution by incorporating external knowledge, but existing methods still face several limitations: additional deployment costs of separate retrievers, redundant input tokens from retrieved text chunks, and the lack of joint optimization of retrieval and generation. To address these issues, we propose \\textbf{RetroLLM}, a unified framework that integrates retrieval and generation into a single, cohesive process, enabling LLMs to directly generate fine-grained evidence from the corpus with constrained decoding. Moreover, to mitigate false pruning in the process of constrained evidence generation, we introduce (1) hierarchical FM-Index constraints, which generate corpus-constrained clues to identify a subset of relevant documents before evidence generation, reducing irrelevant decoding space; and (2) a forward-looking constrained decoding strategy, which considers the relevance of future sequences to improve evidence accuracy. Extensive experiments on five open-domain QA datasets demonstrate RetroLLM's superior performance across both in-domain and out-of-domain tasks. The code is available at \\url{https://github.com/sunnynexus/RetroLLM}.",
"title": "One for Dozens: Adaptive REcommendation for All Domains with\n Counterfactual Augmentation",
36999
+
"url": "http://arxiv.org/abs/2412.11905v1",
37000
+
"pub_date": "2024-12-16",
37001
+
"summary": "Multi-domain recommendation (MDR) aims to enhance recommendation performance across various domains. However, real-world recommender systems in online platforms often need to handle dozens or even hundreds of domains, far exceeding the capabilities of traditional MDR algorithms, which typically focus on fewer than five domains. Key challenges include a substantial increase in parameter count, high maintenance costs, and intricate knowledge transfer patterns across domains. Furthermore, minor domains often suffer from data sparsity, leading to inadequate training in classical methods. To address these issues, we propose Adaptive REcommendation for All Domains with counterfactual augmentation (AREAD). AREAD employs a hierarchical structure with a limited number of expert networks at several layers, to effectively capture domain knowledge at different granularities. To adaptively capture the knowledge transfer pattern across domains, we generate and iteratively prune a hierarchical expert network selection mask for each domain during training. Additionally, counterfactual assumptions are used to augment data in minor domains, supporting their iterative mask pruning. Our experiments on two public datasets, each encompassing over twenty domains, demonstrate AREAD's effectiveness, especially in data-sparse domains. Source code is available at https://github.com/Chrissie-Law/AREAD-Multi-Domain-Recommendation.",
"title": "Investigating Mixture of Experts in Dense Retrieval",
37006
+
"url": "http://arxiv.org/abs/2412.11864v1",
37007
+
"pub_date": "2024-12-16",
37008
+
"summary": "While Dense Retrieval Models (DRMs) have advanced Information Retrieval (IR), one limitation of these neural models is their narrow generalizability and robustness. To cope with this issue, one can leverage the Mixture-of-Experts (MoE) architecture. While previous IR studies have incorporated MoE architectures within the Transformer layers of DRMs, our work investigates an architecture that integrates a single MoE block (SB-MoE) after the output of the final Transformer layer. Our empirical evaluation investigates how SB-MoE compares, in terms of retrieval effectiveness, to standard fine-tuning. In detail, we fine-tune three DRMs (TinyBERT, BERT, and Contriever) across four benchmark collections with and without adding the MoE block. Moreover, since MoE showcases performance variations with respect to its parameters (i.e., the number of experts), we conduct additional experiments to investigate this aspect further. The findings show the effectiveness of SB-MoE especially for DRMs with a low number of parameters (i.e., TinyBERT), as it consistently outperforms the fine-tuned underlying model on all four benchmarks. For DRMs with a higher number of parameters (i.e., BERT and Contriever), SB-MoE requires larger numbers of training samples to yield better retrieval performance.",
"title": "SPGL: Enhancing Session-based Recommendation with Single Positive Graph\n Learning",
37013
+
"url": "http://arxiv.org/abs/2412.11846v1",
37014
+
"pub_date": "2024-12-16",
37015
+
"summary": "Session-based recommendation seeks to forecast the next item a user will be interested in, based on their interaction sequences. Due to limited interaction data, session-based recommendation faces the challenge of limited data availability. Traditional methods enhance feature learning by constructing complex models to generate positive and negative samples. This paper proposes a session-based recommendation model using Single Positive optimization loss and Graph Learning (SPGL) to deal with the problem of data sparsity, high model complexity and weak transferability. SPGL utilizes graph convolutional networks to generate global item representations and batch session representations, effectively capturing intrinsic relationships between items. The use of single positive optimization loss improves uniformity of item representations, thereby enhancing recommendation accuracy. In the intent extractor, SPGL considers the hop count of the adjacency matrix when constructing the directed global graph to fully integrate spatial information. It also takes into account the reverse positional information of items when constructing session representations to incorporate temporal information. Comparative experiments across three benchmark datasets, Tmall, RetailRocket and Diginetica, demonstrate the model's effectiveness. The source code can be accessed on https://github.com/liang-tian-tian/SPGL .",
0 commit comments