Skip to content

Commit 86fabce

Browse files
committed
Clamp values
1 parent ab01506 commit 86fabce

File tree

1 file changed

+32
-19
lines changed

1 file changed

+32
-19
lines changed

tools/imatrix/imatrix.cpp

Lines changed: 32 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -298,12 +298,15 @@ static void compute_tensor_statistics(std::vector<tensor_statistics> & tstats) {
298298
}
299299

300300
// Compute Cosine Similarity
301+
float cs = 0.0f;
301302
if (norm1_sq > 0.0f && norm2_sq > 0.0f) {
302-
float cs = dot_prod / (std::sqrt(norm1_sq) * std::sqrt(norm2_sq));
303+
cs = dot_prod / (std::sqrt(norm1_sq) * std::sqrt(norm2_sq));
303304
cs = std::min(cs, 1.0f);
304305
cs = std::max(cs, -1.0f);
305-
ts.cossim = cs;
306+
} else if (norm1_sq == 0.0f && norm2_sq == 0.0f) {
307+
cs = 1.0f;
306308
}
309+
ts.cossim = cs;
307310

308311
// Compute L2 Norm (Euclidean Distance)
309312
ts.l2_norm = std::sqrt(l2_dist_sq);
@@ -332,45 +335,54 @@ static void compute_layer_statistics(const std::vector<tensor_statistics> & tsta
332335
const int blk = std::stoi(match[1]);
333336
if (blk <= 0) { continue; }
334337
std::string prev_lyr(ts.tensor);
335-
prev_lyr.replace(match.position(1), match.length(1), std::to_string(blk-1));
336-
if (auto it_prev = tidx.find(prev_lyr); it_prev == tidx.end()) { continue; }
337-
const auto curr_avg = compute_tensor_averages(stats_map.at(ts.tensor));
338-
const auto prev_avg = compute_tensor_averages(stats_map.at(prev_lyr));
338+
prev_lyr.replace(match.position(1), match.length(1), std::to_string(blk - 1));
339+
if (tidx.find(prev_lyr) == tidx.end()) { continue; }
340+
auto it_curr = stats_map.find(ts.tensor);
341+
auto it_prev = stats_map.find(prev_lyr);
342+
if (it_curr == stats_map.end() || it_prev == stats_map.end()) { continue; }
343+
344+
const auto curr_avg = compute_tensor_averages(it_curr->second);
345+
const auto prev_avg = compute_tensor_averages(it_prev->second);
339346
if (curr_avg.empty() || prev_avg.empty() || curr_avg.size() != prev_avg.size()) { continue; }
340-
auto & [curr, prev] = agr[blk];
341-
curr.insert(curr.end(), curr_avg.begin(), curr_avg.end());
342-
prev.insert(prev.end(), prev_avg.begin(), prev_avg.end());
347+
348+
auto & entry = agr[blk];
349+
entry.curr_avg.insert(entry.curr_avg.end(), curr_avg.begin(), curr_avg.end());
350+
entry.prev_avg.insert(entry.prev_avg.end(), prev_avg.begin(), prev_avg.end());
343351
}
344352

345353
for (auto & kv : agr) {
346354
const auto & curr = kv.second.curr_avg;
347355
const auto & prev = kv.second.prev_avg;
348356
if (curr.size() != prev.size() || curr.empty()) { continue; }
349357

350-
float dot_prod = 0.0f;
351-
float norm1_sq = 0.0f;
352-
float norm2_sq = 0.0f;
353-
float l2_dist_sq = 0.0f;
358+
double dot_prod = 0.0;
359+
double norm1_sq = 0.0;
360+
double norm2_sq = 0.0;
361+
double l2_dist_sq = 0.0;
354362

355363
for (size_t i = 0; i < curr.size(); ++i) {
356-
const float c_val = curr[i];
357-
const float p_val = prev[i];
364+
const double c_val = curr[i];
365+
const double p_val = prev[i];
358366
dot_prod += c_val * p_val;
359367
norm1_sq += c_val * c_val;
360368
norm2_sq += p_val * p_val;
361-
const float diff = c_val - p_val;
369+
const double diff = c_val - p_val;
362370
l2_dist_sq += diff * diff;
363371
}
364372

365373
// Compute aggregated Cosine Similarity
366374
float cossim = 0.0f;
367375
if (norm1_sq > 0.0f && norm2_sq > 0.0f) {
368376
cossim = dot_prod / (std::sqrt(norm1_sq) * std::sqrt(norm2_sq));
377+
cossim = std::min(cossim, 1.0f);
378+
cossim = std::max(cossim, -1.0f);
379+
} else if (norm1_sq == 0.0f && norm2_sq == 0.0f) {
380+
cossim = 1.0f;
369381
}
370382
layer_cossim[kv.first] = cossim;
371383

372384
// Compute aggregated L2 Norm (Euclidean Distance)
373-
layer_l2_norm[kv.first] = std::sqrt(l2_dist_sq);
385+
layer_l2_norm[kv.first] = (float)std::sqrt(l2_dist_sq);
374386
}
375387
}
376388

@@ -1309,8 +1321,8 @@ static bool show_statistics(const common_params & params) {
13091321
float layer_zd = 0.0f;
13101322
int n = 0;
13111323
};
1312-
std::map<int, layer_stats> ls;
13131324

1325+
std::map<int, layer_stats> ls;
13141326
LOG_INF("\nComputing tensor statistics for %s (%d tensors)\n", params.in_files[0].c_str(), static_cast<int>(ts.size()));
13151327
LOG_INF("\n%6s\t%18s\t%13s\t%8s\t%8s\t%7s\t%15s\t%13s\t%11s\t%8s\t%5s\t%10s\n",
13161328
"Layer",
@@ -1330,7 +1342,8 @@ static bool show_statistics(const common_params & params) {
13301342
"=============================================================\n");
13311343

13321344
for (const auto & tstat : ts) {
1333-
std::string layer, name;
1345+
std::string layer;
1346+
std::string name;
13341347
process_tensor_name(tstat.tensor, layer, name);
13351348

13361349
int blk;

0 commit comments

Comments
 (0)