@@ -36,12 +36,15 @@ def str2bool(v):
36
36
37
37
import p2b1 as hf
38
38
reload (hf )
39
- lib_path = os .path .abspath (os .path .join ('..' , 'common' ))
40
- sys .path .append (lib_path )
39
+
40
+ file_path = os .path .dirname (os .path .realpath (__file__ ))
41
+ lib_path = os .path .abspath (os .path .join (file_path , '..' , 'common' ))
42
+ sys .path .append (lib_path )
43
+
41
44
import keras_model_utils as KEU
42
45
reload (KEU )
43
- import pilot2_datasets as p2
44
- reload (p2 )
46
+ import pilot2_datasets as p2
47
+ reload (p2 )
45
48
maps = hf .autoencoder_preprocess ()
46
49
47
50
from keras .optimizers import SGD ,RMSprop ,Adam
@@ -55,8 +58,8 @@ def str2bool(v):
55
58
batch_size = GP ['batch_size' ]
56
59
57
60
##### Read Data ########
58
- data_set = p2 .data_sets [opts .set_sel ][0 ]
59
- data_hash = p2 .data_sets [opts .set_sel ][1 ]
61
+ data_set = p2 .data_sets [opts .set_sel ][0 ]
62
+ data_hash = p2 .data_sets [opts .set_sel ][1 ]
60
63
print ('Reading Data Files... %s->%s' % (opts .set_sel , data_set ))
61
64
data_file = get_file (data_set , origin = 'http://ftp.mcs.anl.gov/pub/candle/public/benchmarks/Pilot2/' + data_set + '.tar.gz' , untar = True , md5_hash = data_hash )
62
65
data_dir = os .path .join (os .path .dirname (data_file ), data_set )
@@ -66,10 +69,10 @@ def str2bool(v):
66
69
datagen = hf .ImageNoiseDataGenerator (corruption_level = GP ['noise_factor' ])
67
70
68
71
## get data dimension ##
69
- num_samples = 0
70
- for f in data_files :
71
- X = np .load (f )
72
- num_samples += X .shape [0 ]
72
+ num_samples = 0
73
+ for f in data_files :
74
+ X = np .load (f )
75
+ num_samples += X .shape [0 ]
73
76
74
77
X = np .load (data_files [0 ])
75
78
print 'Data Format: [Num Sample (%s), Num Molecules (%s), Num Atoms (%s), Position + Molecule Tag (One-hot encoded) (%s)]' % (
0 commit comments