|
4 | 4 | Uno can be trained with a subset of dose response data sources. Here is an command line example of training with all 6 sources: CCLE, CTRP, gCSI, GDSC, NCI60 single drug response, ALMANAC drug pair response.
|
5 | 5 |
|
6 | 6 | ```
|
7 |
| -uno_baseline_keras2.py --train_sources all --cache cache/all --use_landmark_genes --preprocess_rnaseq source_scale --no_feature_source --no_response_source |
| 7 | +uno_baseline_keras2.py --train_sources all --cache cache/all --use_landmark_genes True --preprocess_rnaseq source_scale --no_feature_source True --no_response_source True |
8 | 8 | Using TensorFlow backend.
|
9 | 9 | Params: {'activation': 'relu', 'batch_size': 32, 'dense': [1000, 1000, 1000], 'dense_feature_layers': [1000, 1000, 1000], 'drop': 0, 'epochs': 10, 'learning_rate': None, 'loss':
|
10 | 10 | 'mse', 'optimizer': 'adam', 'residual': False, 'rng_seed': 2018, 'save': 'save/uno', 'scaling': 'std', 'feature_subsample': 0, 'validation_split': 0.2, 'solr_root': '', 'timeout'
|
@@ -118,5 +118,43 @@ Between random pairs in y_val:
|
118 | 118 | Data points per epoch: train = 20158325, val = 5144721
|
119 | 119 | Steps per epoch: train = 629948, val = 160773
|
120 | 120 | Epoch 1/10
|
121 |
| - 8078/629948 [..............................] - ETA: 50:20:54 - loss: 0.1955 - mae: 0.2982 - r2: 0.2964 |
| 121 | +629948/629948 [==============================] - 196053s 311ms/step - loss: 0.0993 - mae: 0.2029 - r2: 0.6316 - val_loss: 0.1473 - val_mae: 0.2404 - val_r2: 0.4770 |
| 122 | +Current time ....196052.671 |
| 123 | +Epoch 2/10 |
| 124 | +629948/629948 [==============================] - 194858s 309ms/step - loss: 0.0872 - mae: 0.1890 - r2: 0.6755 - val_loss: 0.1469 - val_mae: 0.2393 - val_r2: 0.4771 |
| 125 | +Current time ....390911.212 |
| 126 | +Epoch 3/10 |
| 127 | +629948/629948 [==============================] - 192603s 306ms/step - loss: 0.0848 - mae: 0.1861 - r2: 0.6840 - val_loss: 0.1486 - val_mae: 0.2409 - val_r2: 0.4720 |
| 128 | +Current time ....583514.913 |
| 129 | +Epoch 4/10 |
| 130 | +629948/629948 [==============================] - 192734s 306ms/step - loss: 0.0836 - mae: 0.1846 - r2: 0.6885 - val_loss: 0.1500 - val_mae: 0.2417 - val_r2: 0.4657 |
| 131 | +Current time ....776248.738 |
| 132 | +Epoch 5/10 |
| 133 | +629948/629948 [==============================] - 190948s 303ms/step - loss: 0.0829 - mae: 0.1836 - r2: 0.6912 - val_loss: 0.1498 - val_mae: 0.2412 - val_r2: 0.4678 |
| 134 | +Current time ....967196.253 |
| 135 | +Epoch 6/10 |
| 136 | +629948/629948 [==============================] - 191344s 304ms/step - loss: 0.0824 - mae: 0.1829 - r2: 0.6931 - val_loss: 0.1506 - val_mae: 0.2417 - val_r2: 0.4631 |
| 137 | +Current time ....1158540.613 |
| 138 | +Epoch 7/10 |
| 139 | +629948/629948 [==============================] - 195056s 310ms/step - loss: 0.0820 - mae: 0.1824 - r2: 0.6945 - val_loss: 0.1518 - val_mae: 0.2431 - val_r2: 0.4596 |
| 140 | +Current time ....1353596.930 |
| 141 | +Epoch 8/10 |
| 142 | +629948/629948 [==============================] - 193873s 308ms/step - loss: 0.0817 - mae: 0.1820 - r2: 0.6956 - val_loss: 0.1525 - val_mae: 0.2428 - val_r2: 0.4570 |
| 143 | +Current time ....1547470.041 |
| 144 | +Epoch 9/10 |
| 145 | +629948/629948 [==============================] - 191701s 304ms/step - loss: 0.0815 - mae: 0.1818 - r2: 0.6963 - val_loss: 0.1525 - val_mae: 0.2434 - val_r2: 0.4593 |
| 146 | +Current time ....1739170.656 |
| 147 | +Epoch 10/10 |
| 148 | +629948/629948 [==============================] - 194420s 309ms/step - loss: 0.0813 - mae: 0.1815 - r2: 0.6971 - val_loss: 0.1528 - val_mae: 0.2432 - val_r2: 0.4600 |
| 149 | +Current time ....1933590.940 |
| 150 | +Comparing y_true and y_pred: |
| 151 | + mse: 0.1528 |
| 152 | + mae: 0.2432 |
| 153 | + r2: 0.4966 |
| 154 | + corr: 0.7077 |
| 155 | +``` |
| 156 | + |
| 157 | +Training Uno on all data sources is slow. The `--train_sources` parameter can be used to test the code with a smaller set of training data. An example command line is the following. |
| 158 | +``` |
| 159 | +uno_baseline_keras2.py --train_sources CCLE --cache cache/CCLE --use_landmark_genes True --preprocess_rnaseq source_scale --no_feature_source True --no_response_source True |
122 | 160 | ```
|
0 commit comments