Skip to content

Commit 3e102b8

Browse files
committed
Fix linter issues.
1 parent dd6b459 commit 3e102b8

File tree

2 files changed

+6
-6
lines changed

2 files changed

+6
-6
lines changed

examples/ADRP/adrp.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -226,8 +226,8 @@ def load_headers(desc_headers, train_headers, header_url):
226226
def get_model(params):
227227
url = params['model_url']
228228
file_model = ('DIR.ml.' + params['base_name']
229-
+ '.Orderable_zinc_db_enaHLL.sorted.4col.dd.parquet/'
230-
+ 'reg_go.autosave.model.h5')
229+
+ '.Orderable_zinc_db_enaHLL.sorted.4col.dd.parquet/'
230+
+ 'reg_go.autosave.model.h5')
231231
model_file = candle.get_file(
232232
file_model, url + file_model, cache_subdir="Pilot1"
233233
)

examples/ADRP/adrp_baseline_keras2.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -22,11 +22,11 @@
2222
from sklearn.metrics import (
2323
r2_score,
2424
roc_auc_score,
25-
# pearsonr,
2625
accuracy_score,
2726
)
2827
from scipy.stats import pearsonr
2928

29+
import sys
3030
import adrp
3131
import candle
3232

@@ -221,7 +221,7 @@ def run_inference(params):
221221
sys.exit("Model format should be one of json, yaml or h5")
222222

223223
# compile separately to get custom functions as needed
224-
loaded_model.compile(optimizer = params['optimizer'], loss = params['loss'], metrics = ['mae', r2])
224+
loaded_model.compile(optimizer=params['optimizer'], loss=params['loss'], metrics=['mae', r2])
225225

226226
# use same data as training
227227
seed = params['rng_seed']
@@ -516,7 +516,7 @@ def post_process(params, X_train, X_test, Y_test, score, history, model):
516516
print("Loaded json model from disk")
517517

518518
# evaluate json loaded model on test data
519-
loaded_model.compile(optimizer = params['optimizer'], loss = params['loss'], metrics = ['mae', r2])
519+
loaded_model_json.compile(optimizer=params['optimizer'], loss=params['loss'], metrics=['mae', r2])
520520
score_json = loaded_model_json.evaluate(X_test, Y_test, verbose=0)
521521

522522
print("json Validation loss:", score_json[0])
@@ -529,7 +529,7 @@ def post_process(params, X_train, X_test, Y_test, score, history, model):
529529
print("Loaded yaml model from disk")
530530

531531
# evaluate loaded model on test data
532-
loaded_model.compile(optimizer = params['optimizer'], loss = params['loss'], metrics = ['mae', r2])
532+
loaded_model_yaml.compile(optimizer=params['optimizer'], loss=params['loss'], metrics=['mae', r2])
533533
score_yaml = loaded_model_yaml.evaluate(X_test, Y_test, verbose=0)
534534

535535
print("yaml Validation loss:", score_yaml[0])

0 commit comments

Comments
 (0)