Skip to content

Commit 50d0d65

Browse files
committed
fix flake8 issues
1 parent 555ed24 commit 50d0d65

File tree

5 files changed

+6
-14
lines changed

5 files changed

+6
-14
lines changed

examples/darts/advanced/advanced_example.py

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,6 @@
11
import torch
22
import torch.nn as nn
33
from torch import optim
4-
from torch.utils.data import DataLoader
54
from torchvision import datasets, transforms
65

76
import logging
@@ -39,7 +38,7 @@ def run(params):
3938
args = candle.ArgumentStruct(**params)
4039

4140
args.cuda = torch.cuda.is_available()
42-
device = torch.device(f"cuda" if args.cuda else "cpu")
41+
device = torch.device("cuda" if args.cuda else "cpu")
4342
darts.banner(device=device)
4443

4544
trainloader = torch.utils.data.DataLoader(

examples/darts/uno/uno_example.py

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,6 @@
44
import torch.nn as nn
55
from torch import optim
66
from torch.utils.data import DataLoader
7-
import logging
87

98
import example_setup as bmk
109
import darts
@@ -34,7 +33,7 @@ def run(params):
3433
args = candle.ArgumentStruct(**params)
3534

3635
args.cuda = torch.cuda.is_available()
37-
device = torch.device(f"cuda" if args.cuda else f"cpu")
36+
device = torch.device("cuda" if args.cuda else "cpu")
3837
darts.banner(device=device)
3938

4039
train_data = darts.Uno('./data', 'train', download=True)

examples/histogen/distributed/distributed.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,3 @@
1-
import math
21
import pickle
32

43
import torch

examples/rnagen/rnagen.py

Lines changed: 2 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,6 @@
33
import time
44
import logging
55
import argparse
6-
import random
76
import numpy as np
87
import pandas as pd
98
from sklearn.impute import SimpleImputer
@@ -195,10 +194,6 @@ def train_type_classifier(x, y, batch_size=256, epochs=2, verbose=1):
195194
return model
196195

197196

198-
def evaluate_model(model, df):
199-
return model.evaluate(x, y, batch_size=256)
200-
201-
202197
def covariance(x, y):
203198
return K.mean(x * y) - K.mean(x) * K.mean(y)
204199

@@ -387,7 +382,7 @@ def main():
387382
end = time.time()
388383
print(f'Done in {end-start:.3f} seconds ({args.n_samples/(end-start):.1f} samples/s).')
389384

390-
print(f'\nTrain a type classifier with synthetic data:')
385+
print('\nTrain a type classifier with synthetic data:')
391386
x_new = np.concatenate((x_train, samples), axis=0)
392387
y_new = np.concatenate((y_train, c_sample), axis=0)
393388
xy = np.concatenate((x_new, y_new), axis=1)
@@ -422,7 +417,7 @@ def main():
422417
matplotlib.use('Agg')
423418
import matplotlib.pyplot as plt
424419
title = f'Type classifier accuray on holdout data ({args.top_k_types} types)'
425-
fig = plt.figure(dpi=300)
420+
plt.figure(dpi=300)
426421
ax = df.plot(title=title, ax=plt.gca(), xticks=[1, 5, 10, 15, 20])
427422
ax.set_ylim(0.35, 1)
428423
prefix = f'test-accuracy-comparison-{args.top_k_types}-types'

examples/rnagen/rnagen_baseline_keras2.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -409,7 +409,7 @@ def run(gParams):
409409
end = time.time()
410410
print(f'Done in {end-start:.3f} seconds ({args.n_samples/(end-start):.1f} samples/s).')
411411

412-
print(f'\nTrain a type classifier with synthetic data:')
412+
print('\nTrain a type classifier with synthetic data:')
413413
x_new = np.concatenate((x_train, samples), axis=0)
414414
y_new = np.concatenate((y_train, c_sample), axis=0)
415415
xy = np.concatenate((x_new, y_new), axis=1)
@@ -444,7 +444,7 @@ def run(gParams):
444444
matplotlib.use('Agg')
445445
import matplotlib.pyplot as plt
446446
title = f'Type classifier accuray on holdout data ({args.top_k_types} types)'
447-
fig = plt.figure(dpi=300)
447+
plt.figure(dpi=300)
448448
ax = df.plot(title=title, ax=plt.gca(), xticks=[1, 5, 10, 15, 20])
449449
ax.set_ylim(0.35, 1)
450450
prefix = f'test-accuracy-comparison-{args.top_k_types}-types'

0 commit comments

Comments
 (0)