|
| 1 | +# UnoMT in Pytorch |
| 2 | +Multi-tasking (drug response, cell line classification, etc.) Uno Implemented in PyTorch. |
| 3 | +https://github.com/xduan7/UnoPytorch |
| 4 | + |
| 5 | + |
| 6 | +## Todos |
| 7 | +* More labels for the network like drug labels; |
| 8 | +* Dataloader hanging problem when num_workers set to more than 0; |
| 9 | +* Better pre-processing for drug descriptor integer features; |
| 10 | +* Network regularization with weight decay and/or dropout; |
| 11 | +* Hyper-parameter searching; |
| 12 | + |
| 13 | +## Prerequisites |
| 14 | +``` |
| 15 | +Python 3.6.4 |
| 16 | +PyTorch 0.4.1 |
| 17 | +SciPy 1.1.0 |
| 18 | +pandas 0.23.4 |
| 19 | +Scikit-Learn 0.19.1 |
| 20 | +urllib3 1.23 |
| 21 | +joblib 0.12.2 |
| 22 | +``` |
| 23 | + |
| 24 | + |
| 25 | +The default network structure is shown below: |
| 26 | +<img src="https://github.com/xduan7/UnoPytorch/blob/master/images/default_network.jpg" width="100%"> |
| 27 | + |
| 28 | +An example of the program output for training on NCI60 and valdiation on all other data sources is shown below: |
| 29 | +``` |
| 30 | +python unoMT_baseline_pytorch.py --resp_val_start_epoch 2 --epochs 5 |
| 31 | +Importing candle utils for pytorch |
| 32 | +Created unoMT benchmark |
| 33 | +Configuration file: ./unoMT_default_model.txt |
| 34 | +{'autoencoder_init': True, |
| 35 | + 'cl_clf_layer_dim': 256, |
| 36 | + 'cl_clf_lr': 0.008, |
| 37 | + 'cl_clf_num_layers': 2, |
| 38 | + 'cl_clf_opt': 'SGD', |
| 39 | + 'disjoint_cells': True, |
| 40 | + 'disjoint_drugs': False, |
| 41 | + 'drop': 0.1, |
| 42 | + 'drug_feature_usage': 'both', |
| 43 | + 'drug_latent_dim': 1024, |
| 44 | + 'drug_layer_dim': 4096, |
| 45 | + 'drug_num_layers': 2, |
| 46 | + 'drug_qed_activation': 'sigmoid', |
| 47 | + 'drug_qed_layer_dim': 1024, |
| 48 | + 'drug_qed_loss_func': 'mse', |
| 49 | + 'drug_qed_lr': 0.01, |
| 50 | + 'drug_qed_num_layers': 2, |
| 51 | + 'drug_qed_opt': 'SGD', |
| 52 | + 'drug_target_layer_dim': 1024, |
| 53 | + 'drug_target_lr': 0.002, |
| 54 | + 'drug_target_num_layers': 2, |
| 55 | + 'drug_target_opt': 'SGD', |
| 56 | + 'dscptr_nan_threshold': 0.0, |
| 57 | + 'dscptr_scaling': 'std', |
| 58 | + 'early_stop_patience': 5, |
| 59 | + 'epochs': 1000, |
| 60 | + 'gene_latent_dim': 512, |
| 61 | + 'gene_layer_dim': 1024, |
| 62 | + 'gene_num_layers': 2, |
| 63 | + 'grth_scaling': 'none', |
| 64 | + 'l2_regularization': 1e-05, |
| 65 | + 'lr_decay_factor': 0.98, |
| 66 | + 'max_num_batches': 1000, |
| 67 | + 'qed_scaling': 'none', |
| 68 | + 'resp_activation': 'none', |
| 69 | + 'resp_layer_dim': 2048, |
| 70 | + 'resp_loss_func': 'mse', |
| 71 | + 'resp_lr': 1e-05, |
| 72 | + 'resp_num_blocks': 4, |
| 73 | + 'resp_num_layers': 2, |
| 74 | + 'resp_num_layers_per_block': 2, |
| 75 | + 'resp_opt': 'SGD', |
| 76 | + 'resp_val_start_epoch': 0, |
| 77 | + 'rnaseq_feature_usage': 'combat', |
| 78 | + 'rnaseq_scaling': 'std', |
| 79 | + 'rng_seed': 0, |
| 80 | + 'save_path': 'save/unoMT', |
| 81 | + 'solr_root': '', |
| 82 | + 'timeout': 3600, |
| 83 | + 'train_sources': 'NCI60', |
| 84 | + 'trn_batch_size': 32, |
| 85 | + 'val_batch_size': 256, |
| 86 | + 'val_sources': ['NCI60', 'CTRP', 'GDSC', 'CCLE', 'gCSI'], |
| 87 | + 'val_split': 0.2} |
| 88 | +Params: |
| 89 | +{'autoencoder_init': True, |
| 90 | + 'cl_clf_layer_dim': 256, |
| 91 | + 'cl_clf_lr': 0.008, |
| 92 | + 'cl_clf_num_layers': 2, |
| 93 | + 'cl_clf_opt': 'SGD', |
| 94 | + 'datatype': <class 'numpy.float32'>, |
| 95 | + 'disjoint_cells': True, |
| 96 | + 'disjoint_drugs': False, |
| 97 | + 'drop': 0.1, |
| 98 | + 'drug_feature_usage': 'both', |
| 99 | + 'drug_latent_dim': 1024, |
| 100 | + 'drug_layer_dim': 4096, |
| 101 | + 'drug_num_layers': 2, |
| 102 | + 'drug_qed_activation': 'sigmoid', |
| 103 | + 'drug_qed_layer_dim': 1024, |
| 104 | + 'drug_qed_loss_func': 'mse', |
| 105 | + 'drug_qed_lr': 0.01, |
| 106 | + 'drug_qed_num_layers': 2, |
| 107 | + 'drug_qed_opt': 'SGD', |
| 108 | + 'drug_target_layer_dim': 1024, |
| 109 | + 'drug_target_lr': 0.002, |
| 110 | + 'drug_target_num_layers': 2, |
| 111 | + 'drug_target_opt': 'SGD', |
| 112 | + 'dscptr_nan_threshold': 0.0, |
| 113 | + 'dscptr_scaling': 'std', |
| 114 | + 'early_stop_patience': 5, |
| 115 | + 'epochs': 5, |
| 116 | + 'experiment_id': 'EXP000', |
| 117 | + 'gene_latent_dim': 512, |
| 118 | + 'gene_layer_dim': 1024, |
| 119 | + 'gene_num_layers': 2, |
| 120 | + 'gpus': [], |
| 121 | + 'grth_scaling': 'none', |
| 122 | + 'l2_regularization': 1e-05, |
| 123 | + 'logfile': None, |
| 124 | + 'lr_decay_factor': 0.98, |
| 125 | + 'max_num_batches': 1000, |
| 126 | + 'multi_gpu': False, |
| 127 | + 'no_cuda': False, |
| 128 | + 'output_dir': '/home/jamal/Code/ECP/CANDLE/Benchmarks/Pilot1/UnoMT/Output/EXP000/RUN000', |
| 129 | + 'qed_scaling': 'none', |
| 130 | + 'resp_activation': 'none', |
| 131 | + 'resp_layer_dim': 2048, |
| 132 | + 'resp_loss_func': 'mse', |
| 133 | + 'resp_lr': 1e-05, |
| 134 | + 'resp_num_blocks': 4, |
| 135 | + 'resp_num_layers': 2, |
| 136 | + 'resp_num_layers_per_block': 2, |
| 137 | + 'resp_opt': 'SGD', |
| 138 | + 'resp_val_start_epoch': 2, |
| 139 | + 'rnaseq_feature_usage': 'combat', |
| 140 | + 'rnaseq_scaling': 'std', |
| 141 | + 'rng_seed': 0, |
| 142 | + 'run_id': 'RUN000', |
| 143 | + 'save_path': 'save/unoMT', |
| 144 | + 'shuffle': False, |
| 145 | + 'solr_root': '', |
| 146 | + 'timeout': 3600, |
| 147 | + 'train_bool': True, |
| 148 | + 'train_sources': 'NCI60', |
| 149 | + 'trn_batch_size': 32, |
| 150 | + 'val_batch_size': 256, |
| 151 | + 'val_sources': ['NCI60', 'CTRP', 'GDSC', 'CCLE', 'gCSI'], |
| 152 | + 'val_split': 0.2, |
| 153 | + 'verbose': None} |
| 154 | +Parameters initialized |
| 155 | +Failed to split NCI60 cells in stratified way. Splitting randomly ... |
| 156 | +Failed to split NCI60 cells in stratified way. Splitting randomly ... |
| 157 | +Failed to split CCLE cells in stratified way. Splitting randomly ... |
| 158 | +Failed to split CCLE drugs stratified on growth and correlation. Splitting solely on avg growth ... |
| 159 | +Failed to split gCSI drugs stratified on growth and correlation. Splitting solely on avg growth ... |
| 160 | +RespNet( |
| 161 | + (_RespNet__gene_encoder): Sequential( |
| 162 | + (dense_0): Linear(in_features=942, out_features=1024, bias=True) |
| 163 | + (relu_0): ReLU() |
| 164 | + (dense_1): Linear(in_features=1024, out_features=1024, bias=True) |
| 165 | + (relu_1): ReLU() |
| 166 | + (dense_2): Linear(in_features=1024, out_features=512, bias=True) |
| 167 | + ) |
| 168 | + (_RespNet__drug_encoder): Sequential( |
| 169 | + (dense_0): Linear(in_features=4688, out_features=4096, bias=True) |
| 170 | + (relu_0): ReLU() |
| 171 | + (dense_1): Linear(in_features=4096, out_features=4096, bias=True) |
| 172 | + (relu_1): ReLU() |
| 173 | + (dense_2): Linear(in_features=4096, out_features=1024, bias=True) |
| 174 | + ) |
| 175 | + (_RespNet__resp_net): Sequential( |
| 176 | + (dense_0): Linear(in_features=1537, out_features=2048, bias=True) |
| 177 | + (activation_0): ReLU() |
| 178 | + (residual_block_0): ResBlock( |
| 179 | + (block): Sequential( |
| 180 | + (res_dense_0): Linear(in_features=2048, out_features=2048, bias=True) |
| 181 | + (res_dropout_0): Dropout(p=0.1) |
| 182 | + (res_relu_0): ReLU() |
| 183 | + (res_dense_1): Linear(in_features=2048, out_features=2048, bias=True) |
| 184 | + (res_dropout_1): Dropout(p=0.1) |
| 185 | + ) |
| 186 | + (activation): ReLU() |
| 187 | + ) |
| 188 | + (residual_block_1): ResBlock( |
| 189 | + (block): Sequential( |
| 190 | + (res_dense_0): Linear(in_features=2048, out_features=2048, bias=True) |
| 191 | + (res_dropout_0): Dropout(p=0.1) |
| 192 | + (res_relu_0): ReLU() |
| 193 | + (res_dense_1): Linear(in_features=2048, out_features=2048, bias=True) |
| 194 | + (res_dropout_1): Dropout(p=0.1) |
| 195 | + ) |
| 196 | + (activation): ReLU() |
| 197 | + ) |
| 198 | + (residual_block_2): ResBlock( |
| 199 | + (block): Sequential( |
| 200 | + (res_dense_0): Linear(in_features=2048, out_features=2048, bias=True) |
| 201 | + (res_dropout_0): Dropout(p=0.1) |
| 202 | + (res_relu_0): ReLU() |
| 203 | + (res_dense_1): Linear(in_features=2048, out_features=2048, bias=True) |
| 204 | + (res_dropout_1): Dropout(p=0.1) |
| 205 | + ) |
| 206 | + (activation): ReLU() |
| 207 | + ) |
| 208 | + (residual_block_3): ResBlock( |
| 209 | + (block): Sequential( |
| 210 | + (res_dense_0): Linear(in_features=2048, out_features=2048, bias=True) |
| 211 | + (res_dropout_0): Dropout(p=0.1) |
| 212 | + (res_relu_0): ReLU() |
| 213 | + (res_dense_1): Linear(in_features=2048, out_features=2048, bias=True) |
| 214 | + (res_dropout_1): Dropout(p=0.1) |
| 215 | + ) |
| 216 | + (activation): ReLU() |
| 217 | + ) |
| 218 | + (dense_1): Linear(in_features=2048, out_features=2048, bias=True) |
| 219 | + (dropout_1): Dropout(p=0.1) |
| 220 | + (res_relu_1): ReLU() |
| 221 | + (dense_2): Linear(in_features=2048, out_features=2048, bias=True) |
| 222 | + (dropout_2): Dropout(p=0.1) |
| 223 | + (res_relu_2): ReLU() |
| 224 | + (dense_out): Linear(in_features=2048, out_features=1, bias=True) |
| 225 | + ) |
| 226 | +) |
| 227 | +Data sizes: |
| 228 | +Train: |
| 229 | +Data set: NCI60 Size: 882873 |
| 230 | +Validation: |
| 231 | +Data set: NCI60 Size: 260286 |
| 232 | +Data set: CTRP Size: 1040021 |
| 233 | +Data set: GDSC Size: 235812 |
| 234 | +Data set: CCLE Size: 17510 |
| 235 | +Data set: gCSI Size: 10323 |
| 236 | +================================================================================ |
| 237 | +Training Epoch 1: |
| 238 | + Drug Weighted QED Regression Loss: 0.022274 |
| 239 | + Drug Response Regression Loss: 1881.89 |
| 240 | +Epoch Running Time: 13.2 Seconds. |
| 241 | +================================================================================ |
| 242 | +Training Epoch 2: |
| 243 | + Drug Weighted QED Regression Loss: 0.019416 |
| 244 | + Drug Response Regression Loss: 1348.13 |
| 245 | +Epoch Running Time: 12.9 Seconds. |
| 246 | +================================================================================ |
| 247 | +Training Epoch 3: |
| 248 | + Drug Weighted QED Regression Loss: 0.015868 |
| 249 | + Drug Response Regression Loss: 1123.27 |
| 250 | + Cell Line Classification: |
| 251 | + Category Accuracy: 99.01%; |
| 252 | + Site Accuracy: 94.11%; |
| 253 | + Type Accuracy: 94.18% |
| 254 | + Drug Target Family Classification Accuracy: 44.44% |
| 255 | + Drug Weighted QED Regression |
| 256 | + MSE: 0.018845 MAE: 0.111807 R2: +0.45 |
| 257 | + Drug Response Regression: |
| 258 | + NCI60 MSE: 973.04 MAE: 22.18 R2: +0.69 |
| 259 | + CTRP MSE: 2404.64 MAE: 34.04 R2: +0.32 |
| 260 | + GDSC MSE: 2717.81 MAE: 36.53 R2: +0.19 |
| 261 | + CCLE MSE: 2518.47 MAE: 36.60 R2: +0.38 |
| 262 | + gCSI MSE: 2752.33 MAE: 36.97 R2: +0.35 |
| 263 | +Epoch Running Time: 54.6 Seconds. |
| 264 | +================================================================================ |
| 265 | +Training Epoch 4: |
| 266 | + Drug Weighted QED Regression Loss: 0.014096 |
| 267 | + Drug Response Regression Loss: 933.27 |
| 268 | + Cell Line Classification: |
| 269 | + Category Accuracy: 99.34%; |
| 270 | + Site Accuracy: 96.12%; |
| 271 | + Type Accuracy: 96.18% |
| 272 | + Drug Target Family Classification Accuracy: 44.44% |
| 273 | + Drug Weighted QED Regression |
| 274 | + MSE: 0.018467 MAE: 0.110287 R2: +0.46 |
| 275 | + Drug Response Regression: |
| 276 | + NCI60 MSE: 844.51 MAE: 20.41 R2: +0.73 |
| 277 | + CTRP MSE: 2314.19 MAE: 33.76 R2: +0.35 |
| 278 | + GDSC MSE: 2747.73 MAE: 36.65 R2: +0.18 |
| 279 | + CCLE MSE: 2482.03 MAE: 35.89 R2: +0.39 |
| 280 | + gCSI MSE: 2665.35 MAE: 36.27 R2: +0.37 |
| 281 | +Epoch Running Time: 54.9 Seconds. |
| 282 | +================================================================================ |
| 283 | +Training Epoch 5: |
| 284 | + Drug Weighted QED Regression Loss: 0.013514 |
| 285 | + Drug Response Regression Loss: 846.06 |
| 286 | + Cell Line Classification: |
| 287 | + Category Accuracy: 99.38%; |
| 288 | + Site Accuracy: 95.89%; |
| 289 | + Type Accuracy: 95.30% |
| 290 | + Drug Target Family Classification Accuracy: 44.44% |
| 291 | + Drug Weighted QED Regression |
| 292 | + MSE: 0.017026 MAE: 0.106697 R2: +0.50 |
| 293 | + Drug Response Regression: |
| 294 | + NCI60 MSE: 835.82 MAE: 21.33 R2: +0.74 |
| 295 | + CTRP MSE: 2653.04 MAE: 37.98 R2: +0.25 |
| 296 | + GDSC MSE: 2892.86 MAE: 39.76 R2: +0.13 |
| 297 | + CCLE MSE: 2412.75 MAE: 36.82 R2: +0.41 |
| 298 | + gCSI MSE: 2888.99 MAE: 38.70 R2: +0.32 |
| 299 | +Epoch Running Time: 55.5 Seconds. |
| 300 | +Program Running Time: 191.1 Seconds. |
| 301 | +================================================================================ |
| 302 | +Overall Validation Results: |
| 303 | +
|
| 304 | + Best Results from Different Models (Epochs): |
| 305 | + Cell Line Categories Best Accuracy: 99.375% (Epoch = 5) |
| 306 | + Cell Line Sites Best Accuracy: 96.118% (Epoch = 4) |
| 307 | + Cell Line Types Best Accuracy: 96.184% (Epoch = 4) |
| 308 | + Drug Target Family Best Accuracy: 44.444% (Epoch = 3) |
| 309 | + Drug Weighted QED Best R2 Score: +0.5034 (Epoch = 5, MSE = 0.017026, MAE = 0.106697) |
| 310 | + NCI60 Best R2 Score: +0.7369 (Epoch = 5, MSE = 835.82, MAE = 21.33) |
| 311 | + CTRP Best R2 Score: +0.3469 (Epoch = 4, MSE = 2314.19, MAE = 33.76) |
| 312 | + GDSC Best R2 Score: +0.1852 (Epoch = 3, MSE = 2717.81, MAE = 36.53) |
| 313 | + CCLE Best R2 Score: +0.4094 (Epoch = 5, MSE = 2412.75, MAE = 36.82) |
| 314 | + gCSI Best R2 Score: +0.3693 (Epoch = 4, MSE = 2665.35, MAE = 36.27) |
| 315 | +
|
| 316 | + Best Results from the Same Model (Epoch = 5): |
| 317 | + Cell Line Categories Accuracy: 99.375% |
| 318 | + Cell Line Sites Accuracy: 95.888% |
| 319 | + Cell Line Types Accuracy: 95.296% |
| 320 | + Drug Target Family Accuracy: 44.444% |
| 321 | + Drug Weighted QED R2 Score: +0.5034 (MSE = 0.017026, MAE = 0.106697) |
| 322 | + NCI60 R2 Score: +0.7369 (MSE = 835.82, MAE = 21.33) |
| 323 | + CTRP R2 Score: +0.2513 (MSE = 2653.04, MAE = 37.98) |
| 324 | + GDSC R2 Score: +0.1327 (MSE = 2892.86, MAE = 39.76) |
| 325 | + CCLE R2 Score: +0.4094 (MSE = 2412.75, MAE = 36.82) |
| 326 | + gCSI R2 Score: +0.3164 (MSE = 2888.99, MAE = 38.70) |
| 327 | +``` |
| 328 | + |
| 329 | +For default hyper parameters, the transfer learning matrix results are shown below: |
| 330 | +<p align="center"> |
| 331 | + <img src="https://github.com/xduan7/UnoPytorch/blob/master/images/default_results.jpg" width="80%"> |
| 332 | +</p> |
| 333 | + |
| 334 | +Note that the green cells represents R2 score of higher than 0.1, red cells are R2 scores lower than -0.1 and yellows are for all the values in between. |
0 commit comments